References
- Alieldin, S.S., Alshorbagy, A.E. and Shaat, M. (2011), "A first-order shear deformation finite element model for elastostatic analysis of laminated composite plates and the equivalent functionally graded plates", Ain Shams Eng. J., 2, 53-62. https://doi.org/10.1016/j.asej.2011.05.003
- Belinha, J. and Dinis, L.M.J.S. (2006), "Analysis of plates and laminates using the element free Galerkin method", Comput. Struct., 84, 1547-1559. https://doi.org/10.1016/j.compstruc.2006.01.013
- Belounar, L. and Guenfoud, M. (2005), "A new rectangular finite element based on the strain approach for plate bending", Thin Wall. Struct., 43, 47-63. https://doi.org/10.1016/j.tws.2004.08.003
- Bussamra, F.L.S., Neto, E. and Raimundo, D.S. (2012), "Hybrid quasi-Trefftz 3-D finite elements for laminated composite plates", Comput. Struct., 92-93, 185-192. https://doi.org/10.1016/j.compstruc.2011.11.005
- Cai, Y.C., Zhu, H.H. and Guo, S.Y. (2008), "The elastoplastic formulation of polygonal element method based on triangular finite meshes", Struct. Eng. Mech., 30(1), 119-129. https://doi.org/10.12989/sem.2008.30.1.119
- Carrera, E., Miglioretti, F. and Petrolo, M. (2011), "Accuracy of refined finite elements for laminated plate analysis", Compos. Struct., 93, 1311-1327. https://doi.org/10.1016/j.compstruct.2010.11.007
- Carrera, E., Miglioretti, F. and Petrolo, M. (2011), "Guidelines and recommendations on the use of higher order finite elements for bending analysis of plates", Int. J. Comput. Meth. Eng. Sci. Mech., 12, 303-324. https://doi.org/10.1080/15502287.2011.615792
- Cen, S., Long, Y. and Yao, Z. (2002), "A new hybrid-enhanced displacement-based element for the analysis of laminated composite plates", Comput. Struct., 80, 819-833. https://doi.org/10.1016/S0045-7949(02)00049-4
- Kabir, H.R.H. (1995), "A shear locking free robust isoparametric three-node triangular finite element for moderately thick and thin arbitrarily laminated plates", Comput. Struct., 57, 589-597. https://doi.org/10.1016/0045-7949(95)00071-N
- Kant, T., Gupta, A.B., Pendhari, S.S. and Desai, Y.M. (2008), "Elasticity solution for cross-ply composite and sandwich laminates", Compos. Struct., 83, 13-24. https://doi.org/10.1016/j.compstruct.2007.03.003
- Lo, S.H., Zhen, W., Cheung, Y.K and Wanji, C. (2007), "An enhanced global-local higher-order theory for the free edge effect in laminates", Compos. Struct., 81, 499-510. https://doi.org/10.1016/j.compstruct.2006.09.013
- Mindlin, R.D. (1951), "Influence of rotatory inertia and shear deformation on flexural motions of isotropic elastic plates", ASME. J. Appl. Mech., 18, 31-38.
- Padmanav, Dash. and Singh, B.N. (2010), "Geometrically nonlinear bending analysis of laminated composite plate", Commun. Nonlin.. Sci. Numer. Simul., 15, 3170-3181. https://doi.org/10.1016/j.cnsns.2009.11.017
- Polit, O. and Touratier, M. (2000), "High-order triangular sandwich plate finite element for linear and non-linear analyses", Comput. Meth. Appl. Mech. Eng., 185, 305-324. https://doi.org/10.1016/S0045-7825(99)00264-9
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", Appl. Mech. ASME., 51, 745-752. https://doi.org/10.1115/1.3167719
- Reddy, J.N. (1984), Energy and Variational Methods in Applied Mechanics, Wiley, New York.
- Reddy, J.N. (1997), Mechanics of Laminated Composite Plates Theory and Analysis, Boca Raton, CRC Press.
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", ASME. J. Appl. Mech., 12, A69-77.
- Ren, J.G. (1987), "Bending of simply supported anti symmetrically laminated rectangular plate under transverse loading", Compos. Sci. Technol., 28, 231-243. https://doi.org/10.1016/0266-3538(87)90004-2
- Rezaiee-Pajand, M. and Akhtary, M.R. (1996), "Study of several six-node plate bending triangular elements", Journal of Faculty of Engineering, University of Tabriz, 15, 17-38. (in Persian)
- Rezaiee-Pajand, M. and Akhtary, M.R. (1998), "A family of 13-node plate bending triangular elements", Commun. Numer. Meth. Eng., 14, 529-537. https://doi.org/10.1002/(SICI)1099-0887(199806)14:6<529::AID-CNM168>3.0.CO;2-2
- Rezaiee-Pajand, M. and Sarafrazi, S.R. (2000), "Including the shear deformation in thin plate bending and beam elements", Amirkabir J. Sci. Technol., 42(11), 130-147. (in Persian)
- Rezaiee-Pajand, M. and Mohamadzade, H.R. (2010), "Finite element template for four-sided kirchhoff plate bending", Journal of civil and environmental Engineering, University of Tabriz, 2(40), 25-38. (in Persian)
- Rezaiee-Pajand, M. and Karkon, M. (2012), "Two efficient hybrid-Trefftz elements for plate bending analysis", Latin Am. J. Solids Struct., 9(1).
- Rolfes, R. and Rohwer, K. (1997), "Improved transverse shear stresses in composite finite elements based on first order shear deformation theory", Int. J. Numer. Meth. Eng., 40, 51-60. https://doi.org/10.1002/(SICI)1097-0207(19970115)40:1<51::AID-NME49>3.0.CO;2-3
- Rolfes, R., Rohwer, K. and Ballerstaedt, M. (1998), "Efficient linear transverse normal stress analysis of layered composite plates", Comput. Struct., 68, 643-652. https://doi.org/10.1016/S0045-7949(98)00097-2
- Sheikh, A.H., Haldar, S. and Sengupta, D. (2002), "A high precision shear deformable element for the analysis of laminated composite plates of different shapes", Compos. Struct., 55, 329-336. https://doi.org/10.1016/S0263-8223(01)00149-0
- Sheikh, A.H. and Chakrabarti, A. (2003), "A new plate bending element based on higher-order shear deformation theory for the analysis of composite plates", Finite Elem. Analy. D., 39, 883-903. https://doi.org/10.1016/S0168-874X(02)00137-3
- Tahani, M. and Nosier, A. (2003), "Edge effects of uniformly loaded cross-ply composite laminates", Mater. Des., 24, 647-658. https://doi.org/10.1016/S0261-3069(03)00098-0
- Thinh, T.I. and Quoc, T.H. (2010), "Finite element modeling and experimental study on bending and vibration of laminated stiffened glass fiber/polyester composite plates", Comput. Mater. Sci., 49, S383-S389. https://doi.org/10.1016/j.commatsci.2010.05.011
- Timoshenko, S. and Krieger, S.W. (1995), Theory of Plates and Shells, 2nd Edition, McGraw-Hill, Singapore.
- Tu, T.M., Thach, L.N. and Quoc, T.H. (2010), "Finite element modeling for bending and vibration analysis of laminated and sandwich composite plates based on higher-order theory", Comput. Mater. Sci., 49, S390-S394. https://doi.org/10.1016/j.commatsci.2010.03.045
- Vlachoutsis, S. (1992), "Shear correction factors for plates and shells", Int. J. Numer. Meth. Eng., 33, 1537-1552. https://doi.org/10.1002/nme.1620330712
- Whitney, J.M. (1969), "Bending extensional coupling in laminated plates under transverse loading", J. Compos. Mater., 3, 20-35. https://doi.org/10.1177/002199836900300102
-
hen, W. and Wanji, C. (2010), "A
$C^{0}$ -type higher-order theory for bending analysis of laminated composite and sandwich plates", Compos. Struct., 92, 653-661. https://doi.org/10.1016/j.compstruct.2009.09.032
Cited by
- A New Method Applied to the Quadrilateral Membrane Element with Vertex Rigid Rotational Freedom vol.2016, 2016, https://doi.org/10.1155/2016/1045438
- Analytical solution for bending analysis of soft-core composite sandwich plates using improved high-order theory vol.44, pp.1, 2012, https://doi.org/10.12989/sem.2012.44.1.015
- Development of a 2D isoparametric finite element model based on the layerwise approach for the bending analysis of sandwich plates vol.57, pp.3, 2016, https://doi.org/10.12989/sem.2016.57.3.473
- An experimental study on the flexural performance of laminated glass vol.49, pp.2, 2014, https://doi.org/10.12989/sem.2014.49.2.261
- The flexural performance of laminated glass beams under elevated temperature vol.52, pp.3, 2014, https://doi.org/10.12989/sem.2014.52.3.603
- Delamination detection in buckling laminated composite plates vol.167, pp.2, 2014, https://doi.org/10.1680/eacm.13.00020
- Higher order flutter analysis of doubly curved sandwich panels with variable thickness under aerothermoelastic loading vol.60, pp.1, 2016, https://doi.org/10.12989/sem.2016.60.1.001
- Pressure loading, end- shortening and through- thickness shearing effects on geometrically nonlinear response of composite laminated plates using higher order finite strip method vol.45, pp.5, 2013, https://doi.org/10.12989/sem.2013.45.5.677
- A new element for the analysis of composite plates vol.82, 2014, https://doi.org/10.1016/j.finel.2013.12.006
- Stress Analysis of Free-Edge Laminated Composite Plates by Two Bending Elements vol.13, pp.01, 2016, https://doi.org/10.1142/S0219876216500080
- Curvilinear free-edge form effect on stability of perforated laminated composite plates vol.61, pp.2, 2012, https://doi.org/10.12989/sem.2017.61.2.255
- Development of a 2D Isoparametric Finite-Element Model Based on Reddy’s Third-Order Theory for the Bending Behavior Analysis of Composite Laminated Plates vol.55, pp.2, 2012, https://doi.org/10.1007/s11029-019-09807-y
- A simple HSDT for bending, buckling and dynamic behavior of laminated composite plates vol.70, pp.3, 2019, https://doi.org/10.12989/sem.2019.70.3.325
- Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory vol.24, pp.4, 2019, https://doi.org/10.12989/cac.2019.24.4.369
- Enhancing the static behavior of laminated composite plates using a porous layer vol.72, pp.6, 2019, https://doi.org/10.12989/sem.2019.72.6.763
- An efficient shear deformation theory with stretching effect for bending stress analysis of laminated composite plates vol.74, pp.3, 2012, https://doi.org/10.12989/sem.2020.74.3.365