참고문헌
- Angeline, P. (1998), "Evolutionary optimization versus particle swarm optimization: philosophy and performance difference", Proceedings of the Evolutionary Programming Conference, San Diego, USA.
- American Institute of Steel Construction (AISC) (1989), Manual of Steel Construction-allowable Stress Design, 9th Ed., Chicago, IL.
- Coello, C.A.C. (2002), "Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art", Comput. Meth. Appl. Mech. Eng., 191(11-12), 245-287.
- He, S., Wu, Q.H., Wen, J.Y., Saunders, J.R. and Paton, R.C. (2004), "A particle swarm optimizer with passive congregation", Biosystem, 78, 135-147. https://doi.org/10.1016/j.biosystems.2004.08.003
- Kaveh, A. and Talatahari, S. (2009a), "Particle Swarm Optimizer, Ant colony strategy and harmony search scheme hybridized for optimization of truss structures", Comput. Struct., 87(5-6), 267-283. https://doi.org/10.1016/j.compstruc.2009.01.003
- Kaveh, A. and Talatahari, S. (2009b), "Size optimization of space trusses using Big Bang-Big Crunch algorithm", Comput. Struct., 87(17-18), 1129-1140. https://doi.org/10.1016/j.compstruc.2009.04.011
- Kaveh, A. and Talatahari, S. (2009c), "A particle swarm ant colony optimization algorithm for truss structures with discrete variables", J. Constr. Steel Res., 65(8-9), 1558-1568. https://doi.org/10.1016/j.jcsr.2009.04.021
- Kaveh, A. and Talatahari, S. (2010a), "A novel heuristic optimization method: charged system search", Acta Mech., 213(3-4), 267-289. https://doi.org/10.1007/s00707-009-0270-4
- Kaveh, A. and Talatahari, S. (2010b), "Optimal design of skeletal structures via the charged system search algorithm", Struct. Multidiscip. O., 41(6), 893-911. https://doi.org/10.1007/s00158-009-0462-5
- Kaveh, A. and Talatahari, S. (2010c), "Charged system search for optimum grillage systems design using the LRFD-AISC code", J. Constr. Steel Res., 66(6), 767-771. https://doi.org/10.1016/j.jcsr.2010.01.007
- Kennedy, J., Eberhart, R.C. and Shi, Y. (2001), Swarm Intelligence, Morgan Kaufman Publishers, San Francisco.
- LRFD-AISC, Manual of Steel Construction, Load and Resistance Factor Design (1999), Metric Conversion of the Second Edition, Vol. 1, 2. AISC, Chicago.
- Saka, M.P. and Hasançebi, O. (2009) "Design code optimization of steel structures using adaptive harmony search algorithm", Stud. Comput. Intel., 239, 79-120. https://doi.org/10.1007/978-3-642-03450-3_3
- Smith, S. (1998), "The simplex method and evolutionary algorithms", Proceedings of the IEEE International Conference on Evolutionary Computation, 799-804.
- Xu, J.J. and Xin, Z.H. (2005), "An extended particle swarm optimizer", Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS'05) - Workshop 6.
피인용 문헌
- Optimum design of steel frames with semi-rigid connections and composite beams vol.55, pp.2, 2015, https://doi.org/10.12989/sem.2015.55.2.299
- Optimum design of steel space frames including soil-structure interaction vol.54, pp.1, 2016, https://doi.org/10.1007/s00158-016-1401-x
- Determining the Optimum Section of Tunnels Using Ant Colony Optimization vol.2013, 2013, https://doi.org/10.1155/2013/320360
- PSO algorithm for fundamental frequency optimization of fiber metal laminated panels vol.47, pp.5, 2013, https://doi.org/10.12989/sem.2013.47.5.713
- A hybrid imperialist competitive ant colony algorithm for optimum geometry design of frame structures vol.46, pp.3, 2013, https://doi.org/10.12989/sem.2013.46.3.403
- Optimum weight design of steel space frames with semi-rigid connections using harmony search and genetic algorithms 2016, https://doi.org/10.1007/s00521-016-2634-8
- A comparative study on optimum design of multi-element truss structures vol.22, pp.3, 2016, https://doi.org/10.12989/scs.2016.22.3.521
- Optimum design of steel space frames under earthquake effect using harmony search vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.597
- Optimum design of composite steel frames with semi-rigid connections and column bases via genetic algorithm vol.19, pp.4, 2015, https://doi.org/10.12989/scs.2015.19.4.1035
- Optimum design of steel space frames with composite beams using genetic algorithm vol.19, pp.2, 2015, https://doi.org/10.12989/scs.2015.19.2.503
- Optimal dimensioning for the corner combined footings vol.2, pp.2, 2012, https://doi.org/10.12989/acd.2017.2.2.169
- Proposing optimum parameters of TMDs using GSA and PSO algorithms for drift reduction and uniformity vol.63, pp.2, 2012, https://doi.org/10.12989/sem.2017.63.2.147
- IZGARA SİSTEMLERİN OPTİMİZASYONU ÜZERİNDEN KARINCA KOLONİ OPTİMİZASYON ALGORİTMASINDA KARINCA SAYISININ BELİRLENMESİ vol.22, pp.3, 2017, https://doi.org/10.17482/uumfd.298586
- Modeling for the strap combined footings Part I: Optimal dimensioning vol.30, pp.2, 2012, https://doi.org/10.12989/scs.2019.30.2.097
- Design optimization of semi-rigid space steel frames with semi-rigid bases using biogeography-based optimization and genetic algorithms vol.70, pp.2, 2012, https://doi.org/10.12989/sem.2019.70.2.221
- A research on optimum designs of steel frames including soil effects or semi rigid supports using Jaya algorithm vol.73, pp.2, 2020, https://doi.org/10.12989/sem.2020.73.2.153
- Opposition based charged system search for parameter identification problem in a simplified Bouc-Wen model vol.18, pp.4, 2012, https://doi.org/10.12989/eas.2020.18.4.493
- Performance of Jaya algorithm in optimum design of cold-formed steel frames vol.40, pp.6, 2021, https://doi.org/10.12989/scs.2021.40.6.795