DOI QR코드

DOI QR Code

Natural stiffness matrix for beams on Winkler foundation: exact force-based derivation

  • Limkatanyu, Suchart (Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University) ;
  • Kuntiyawichai, Kittisak (Department of Civil Engineering, Faculty of Engineering, Ubonratchathani University) ;
  • Spacone, Enrico (Department of PRICOS, Faculty of Architecture, University "G. D'Annunzio") ;
  • Kwon, Minho (Department of Civil Engineering, ERI, Gyeongsang National University)
  • Received : 2011.02.09
  • Accepted : 2012.02.28
  • Published : 2012.04.10

Abstract

This paper presents an alternative way to derive the exact element stiffness matrix for a beam on Winkler foundation and the fixed-end force vector due to a linearly distributed load. The element flexibility matrix is derived first and forms the core of the exact element stiffness matrix. The governing differential compatibility of the problem is derived using the virtual force principle and solved to obtain the exact moment interpolation functions. The matrix virtual force equation is employed to obtain the exact element flexibility matrix using the exact moment interpolation functions. The so-called "natural" element stiffness matrix is obtained by inverting the exact element flexibility matrix. Two numerical examples are used to verify the accuracy and the efficiency of the natural beam element on Winkler foundation.

Keywords

References

  1. Allotey, N. and El Naggar, M.H. (2008), "An investigation into the Winkler modeling of the cyclic response of rigid footings", Soil Dyn. Earthq. Eng., 28(1), 44-57. https://doi.org/10.1016/j.soildyn.2007.04.003
  2. Argyris, J.H. and Kelsey, S. (1960), Energy Theorems and Structural Analysis, Butterworths & Co Ltd., London.
  3. Avramidis, I.E. and Avramidou, M. (1979), "Steifigkeitsmatrizen für ein weg- und drehelastisch gebettetes finites balkenelement zur berechnung allgemeiner rostförmiger kreuzwerke", Der Stahlbau, 12(12), 372-377.
  4. Avramidis, I.E. and Golm, B. (1980), "Steifigkeitsmatrizen fuer elastisch gebettete balkenelemente", Die Bautechnik, 57(5), 171-173.
  5. Beaufait, F.W. and Hoadley, P.W. (1980), "Analysis of elastic beams on nonlinear foundations", Comput. Struct., 12(5), 669-676. https://doi.org/10.1016/0045-7949(80)90168-6
  6. Bowles, J.E. (1968), Foundation Analysis and Design, McGraw Hill, New York.
  7. Bowles, J.E. (1974), Analysis and Computer Methods in Foundation Engineering, McGraw Hill, New York.
  8. Celep, Z. and Demir, F. (2007), "Symmetrically loaded beam on a two-parameter tensionless foundation", Struct. Eng. Mech., 27(5), 555-574. https://doi.org/10.12989/sem.2007.27.5.555
  9. Civalek, O. and Ozturk, B. (2010), "Free vibration analysis of tapered beam-column with pinned ends embedded in Winkler-Pasternak elastic foundation", Geomech. Eng., 2(1), 45-56. https://doi.org/10.12989/gae.2010.2.1.045
  10. Eisenberger, M. and Yankelevsky, D.Z. (1985), "Exact stiffness matrix for beams on elastic foundation", Comput. Struct., 21(6), 1355-1359. https://doi.org/10.1016/0045-7949(85)90189-0
  11. Erguven, M.E. and Gediki, A. (2003), "A mixed finite element formulation for Timoshenko beam on Winkler foundation", Comput. Mech., 31, 229-337.
  12. Gendy, A.S. and Saleeb, A.F. (1999), "Effective modeling of beams with shear deformations on elastic foundation", Struct. Eng. Mech., 8(6), 607-622. https://doi.org/10.12989/sem.1999.8.6.607
  13. Hetenyi, M. (1946), Beams on Elastic Foundations, University of Michigan Press, Ann Arbor, MI.
  14. Limkatanyu, S. and Spacone, E. (2006), "Frame element with lateral deformable supports: formulations and numerical validation", Comput. Struct., 84(13-14), 942-954. https://doi.org/10.1016/j.compstruc.2005.12.002
  15. Limkatanyu, S., Kuntiyawichai, K. and Spacone, E. (2009), "Response of reinforced concrete piles including soil-pile interaction effects", Eng. Struct., 31(9), 1976-1986. https://doi.org/10.1016/j.engstruct.2009.03.005
  16. Maheshwari, P., Chandra, S. and Basudhar, P.K. (2004), "Response of beams on a tensionless extensible geosynthetic-reinforced earth bed subjected to moving loads", Comput. Geotech., 31(7), 537-548. https://doi.org/10.1016/j.compgeo.2004.07.005
  17. Matlock, H. and Reese, L.C. (1960), "Generalized solutions for laterally loaded piles", J. Soil Mech. Found. Div. ASCE., 86(5), 63-91.
  18. Mindlin, R.D. (1936), "Force at a point in the interior of a semi-infinite solid", Physics, 7, 195-202. https://doi.org/10.1063/1.1745385
  19. Morfidis, K. and Avramidis, I.E. (2002), "Formulation of a generalized beam element on a two-parameter elastic foundation with semi-rigid connections and rigid offsets", Comput. Struct., 80(25), 1919-1934. https://doi.org/10.1016/S0045-7949(02)00226-2
  20. Mullapudi, R. and Ayoub, A. (2010), "Nonlinear finite element modeling of beams on two-parameter foundations", Comput. Geotech., 37(3), 334-342. https://doi.org/10.1016/j.compgeo.2009.11.006
  21. Pilkey, W.D. (2007), Analysis and Design of Elastic Beams: Computational Methods, John Wiley & Sons Inc., New York.
  22. Selvadurai, A.P.S. (1979), Elastic Analysis of Soil-Foundation Interaction, Elsevier Publishing Company, Inc., New York.
  23. Taylor, R.L. (2000), FEAP: A Finite Element Analysis Program. User manual: version 7.3, Department of Civil and Environmental Engineering, University of California, Berkeley.
  24. Terzaghi, K. (1955), "Evaluation of coefficients of subgrade reaction", Geotechnique, 5(4), 297-326. https://doi.org/10.1680/geot.1955.5.4.297
  25. Ting, B.Y. and Mockry, E.F. (1984), "Beam on elastic foundation finite elements", J. Struct. Div.-ASCE., 110(10), 2324-2339. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:10(2324)
  26. Tong, P. and Rossettos, J.N. (1977), Finite Element Method: Basic Technique and Implementation, MIT Press, Cambridge.
  27. Winkler, E. (1867), Die lehre von der elastizität und Festigkeit, Prag.
  28. Wolfram, S. (1992), Mathematica Reference Guide, Addison-Wesley Publishing Company, Redwood City.
  29. Yankelevsky, D.Z., Adin, M.A. and Eisenberger, M. (1988), "Beams on nonlinear Winkler foundation with gaps", Comput. Geotech., 6(1), 1-11. https://doi.org/10.1016/0266-352X(88)90052-3
  30. Zhang, L., Zhao, M., Zou, X. and Zhao, H. (2009), "Deformation analysis of geocell reinforcement using Winkler model", Comput. Geotech., 36(6), 977-983. https://doi.org/10.1016/j.compgeo.2009.03.005
  31. Zhaohua, F. and Cook, R.D. (1983), "Beam elements on two-parameter elastic foundations", J. Eng. Mech.-ASCE., 109(3), 1390-1401. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:6(1390)

Cited by

  1. Exact Stiffness for Beams on Kerr-Type Foundation: The Virtual Force Approach vol.2013, 2013, https://doi.org/10.1155/2013/626287
  2. Correlation between beam on Winkler-Pasternak foundation and beam on elastic substrate medium with inclusion of microstructure and surface effects vol.28, pp.9, 2014, https://doi.org/10.1007/s12206-014-0827-6
  3. Force-based derivation of exact stiffness matrix for beams onWinkler-Pasternak foundation vol.95, pp.2, 2015, https://doi.org/10.1002/zamm.201300030
  4. A Novel Beam-Elastic Substrate Model with Inclusion of Nonlocal Elasticity and Surface Energy Effects vol.41, pp.10, 2016, https://doi.org/10.1007/s13369-016-2085-7
  5. Exact stiffness matrix for nonlocal bars embedded in elastic foundation media: the virtual-force approach vol.89, pp.1, 2014, https://doi.org/10.1007/s10665-014-9707-4
  6. Effects of soil-structure interaction on construction stage analysis of highway bridges vol.12, pp.2, 2013, https://doi.org/10.12989/cac.2013.12.2.169
  7. Nonlinear flexibility-based beam element on Winkler-Pasternak foundation vol.24, pp.4, 2012, https://doi.org/10.12989/gae.2021.24.4.371