References
- Bazilevs, Y., Calo, V.M., Zhang, Y. and Hughes, T.J.R. (2006), "Isogeometric fluid-structure interaction analysis with applications to arterial blood flow", Comput. Mech., 38, 310-322. https://doi.org/10.1007/s00466-006-0084-3
- Bazilevs, Y. and Hughes, T.J.R. (2008a), "NURBS-based isogeometric analysis for the computation of flows about rotating components", Comput. Mech., 43, 143-150. https://doi.org/10.1007/s00466-008-0277-z
- Bazilevs, Y., Calo, V.M., Hughes, T.J.R. and Zhang, Y. (2008b), "Isogeometric fluid-structure interaction: theory, algorithms and computations", Comput. Mech., 43, 3-37. https://doi.org/10.1007/s00466-008-0315-x
- Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element free Galerkin methods", Int. J. Numer. Meth. Eng., 37, 229-256. https://doi.org/10.1002/nme.1620370205
- Benson, D.J., Bazilevs, Y., Hsu, M.C. and Hughes, T.J.R. (2010), "Isogeometric shell analysis: the Reissner- Mindlin shell", Comput. Meth. Appl. Mech. Eng., 199, 276-289. https://doi.org/10.1016/j.cma.2009.05.011
- Ghorashi, S.S., Valizadeh, N. and Mohammadi, S. (2011), "Extended isogeometric analysis for simulation of stationary and propagating cracks", Int. J. Numer. Meth. Eng., doi:10.1002/nme.3277.
- Hoschek, J. and Lasser, D. (1993), Fundamentals of Computer Aided Geometric Design, A.K. Peters, Ldt, Wellesley, Massachusetts.
- Hughes, T.J.R., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Meth. Appl. Mech. Eng., 194, 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008
- Kiendl, J., Bletzinger, K.U., Linhard, J. and Wchner, R. (2009), "Isogeometric shell analysis with Kirchhoff-Love elements", Comput. Meth. Appl. Mech. Eng., 198, 3902-3914. https://doi.org/10.1016/j.cma.2009.08.013
- Krysl, P. and Belytschko, T. (1995), "Analysis of thin plates by the element-free Galerkin method", Comput. Mech., 17, 26-35. https://doi.org/10.1007/BF00356476
- Liu, Y., Hon, Y.C. and Liew, K.M. (2006), "A meshfree Hermite-type radial point interpolation method for Kirchhoff plate problems", Int. J. Numer. Meth. Eng., 66, 1153-1178. https://doi.org/10.1002/nme.1587
- Liu, F.L. and Liew, K.M. (1998), "Differential cubature method for static solutions of arbitrary shaped thick plates", Int. J. Solids Struct., 35, 3655-3674. https://doi.org/10.1016/S0020-7683(97)00215-1
- Nitsche, J. (1971), "Uber ein variation zur lsung von Dirichlet-problemen bei Verwendung von teilrumen die keinen randbedingungen unterworfen sind", Abh. Math. Se. Univ. Hamburg, 36, 9-15. https://doi.org/10.1007/BF02995904
- Piegl, L. and Tiller, W. (1997), The NURBS Book (Monographs in Visual Communication), Springer-Verlag, Second edition, New York.
- Qian, X. (2010), "Full analytical sensitivities in NURBS based isogeometric shape optimization", Comput. Meth.Appl. Mech. Eng., 199, 2059-2071. https://doi.org/10.1016/j.cma.2010.03.005
- Roh, H.Y. and Cho, M. (2004), "The application of geometrically exact shell elements to B-spline surfaces", Comput. Meth. Appl. Mech. Eng., 193, 2261-2299. https://doi.org/10.1016/j.cma.2004.01.019
- Shen, P.C. (1991), Spline Finite Element Methods in Structural Analysis, Hydraulic and Electric Press, Beijing.
- Timoshenko, S.P. and Woinowsky-Krieger, S. (1995), Theory of Plates and Shells, Second edition, McGraw Hill, New York.
- Uhm, T.K. and Youn, S.K. (2009), "T-spline finite element method for the analysis of shell structures", Int. J. Numer. Meth. Eng., 80, 507-536. https://doi.org/10.1002/nme.2648
- Ventsel, E. and Krauthammer, T. (2001), Thin Plates and Shells: Theory, Analysis and Applications, Marcel Dekker, New York.
- Verhoosel, C.V., Scott, M.A., Hughes, T.J.R. and de Borst, R. (2011a), "An isogeometric analysis approach to gradient damage models", Int. J. Numer. Meth. Eng., 86, 115-134. https://doi.org/10.1002/nme.3150
- Verhoosel, C.V., Scott, M.A., de Borst, R. and Hughes, T.J.R. (2011b), "An isogeometric approach to cohesive zone modeling", Int. J. Numer. Meth. Eng., 87, 336-360. https://doi.org/10.1002/nme.3061
- Wall, W.A., Frenzel, M.A. and Cyron, C. (2008), "Isogeometric structural shape optimization", Comput. Meth. Appl. Mech. Eng., 197, 2976-2988. https://doi.org/10.1016/j.cma.2008.01.025
- Xiang, J., Chen, X., He, Y. and He, Zh. (2007), "Static and vibration analysis of thin plates by using finite element method of B-spline wavelet on the interval", Struct. Eng. Mech., 25, 613-629. https://doi.org/10.12989/sem.2007.25.5.613
- Zhang, X., Chen, X., Wang, X. and He, Zh. (2010), "Multivariable finite elements based on B-spline wavelet on the interval for thin plate static and vibration analysis", Finite Elem. Anal. Des., 46, 416-427. https://doi.org/10.1016/j.finel.2010.01.002
- Zhu, T. and Atluri, S.N. (1998), "A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method", Comput. Mech., 21, 211-222. https://doi.org/10.1007/s004660050296
Cited by
- A Fortran implementation of isogeometric analysis for thin plate problems with the penalty method vol.33, pp.7, 2016, https://doi.org/10.1108/EC-10-2015-0306
- Application of isogeometric method to free vibration of Reissner–Mindlin plates with non-conforming multi-patch vol.82, 2017, https://doi.org/10.1016/j.cad.2016.04.006
- Hybrid of topological derivative-based level set method and isogeometric analysis for structural topology optimization vol.21, pp.6, 2016, https://doi.org/10.12989/scs.2016.21.6.1389
- Nitsche method for isogeometric analysis of Reissner–Mindlin plate with non-conforming multi-patches vol.35-36, 2015, https://doi.org/10.1016/j.cagd.2015.03.005