References
- Atalla, M.J. and Inman, D.J. (1998), "On model updating using neural networks", Mech. Syst. Signal Pr., 12(1), 135-161. https://doi.org/10.1006/mssp.1997.0138
- Casciati, S. (2010), "Response surface models to detect and localize distributed cracks in a complex continuum", J. Eng. Mech. ASCE, 136(9), 1131-1142. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000148
- Casciati, S. (2010), "Statistical approach to a SHM benchmark problem", Smart Struct. Syst., 6(1), 17-27. https://doi.org/10.12989/sss.2010.6.1.017
- Chaudhari, T.D. and Maiti, S.K. (2000), "A study of vibration of geometrically segmented beams with and without crack", Int. J. Solids Struct., 37(5), 761-779. https://doi.org/10.1016/S0020-7683(99)00054-2
- Cundy, A.L. (2002), "Use of response surface metamodels in damage identification of dynamic structures", Master Thesis, Virgina Polytechnic Institute and State University, Virginia, US.
- Dimarogonas, A.D. and Paipetis, S.A. (1983), Analytical Methods in rotor dynamics, Elsevier Applied Science, London.
- Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), "A summary review of vibration-based damage identification methods", Shock. Vib., 30(2), 91-105. https://doi.org/10.1177/058310249803000201
- Fang, S.E. and Perera, R. (2011), "Damage identification by response surface based model updating using Doptimal design", Mech. Syst. Signal Pr., 25(2), 717-733. https://doi.org/10.1016/j.ymssp.2010.07.007
- Faravelli, L. and Casciati, S. (2004), "Structural damage detection and localization by response change diagnosis", Prog. Struct. Eng. Mater., 6(2), 104-115. https://doi.org/10.1002/pse.171
- Forrester, A.I.J. and Keane, A.J. (2009), "Recent advances in surrogate-based optimization", Prog. Aerosp. Sci., 45(1-3), 50-79. https://doi.org/10.1016/j.paerosci.2008.11.001
- Gao, Y.H. (2008), "Optimization methods based on Kriging surrogate model and their application in injection molding", Ph. D. Thesis, Dalian University of Technology, Dalian, PRC.
- GaoY.H., Turng, L.S. and Wang, X.C. (2008), "Adaptive geometry and process optimization for injection molding using the Kriging surrogate model trained by numerical simulation", Adv. Poly. Tech., 27(1), 1-16. https://doi.org/10.1002/adv.20116
- Gao, Y.H. and Wang, X.C. (2008), "An effective warpage optimization method in injection molding based on the Kriging model", Int. J. Adv. Manuf. Tech., 37(9-10), 953-960. https://doi.org/10.1007/s00170-007-1044-6
- Gudmundson, P. (1982), "Eigenfrequency changes of structures due to cracks, notches or other geometrical changes", J. Mech. Phys. Solids., 30(5), 339-353. https://doi.org/10.1016/0022-5096(82)90004-7
- Gudmundson, P. (1983), "The dynamic behaviour of slender structures with cross-sectional cracks", J. Mech. Phys. Solids., 31(4), 329-345. https://doi.org/10.1016/0022-5096(83)90003-0
- Hu, J. and Liang, R.Y. (1993), "An integrated approach to detection of cracks using vibration characteristics", J. Frankin Institute, 330(5), 841-853. https://doi.org/10.1016/0016-0032(93)90080-E
- Huang, Z., Wang, C., Chen, J. and Tian, H. (2011), "Optimal design of aeroengine turbine disc based on Kriging surrogate models", J. Comput. Struct., 89(1-2), 27-37 https://doi.org/10.1016/j.compstruc.2010.07.010
- Jones, D.R., Schonlau, M. and Welch, W.J. (1998), "Efficient global optimization of expensive black-box functions", J. Glob. Optim., 13(4), 455-492. https://doi.org/10.1023/A:1008306431147
- Kisa, M. and Brandon, J.A (2000), "Free vibration analysis of multiple open-edge cracked beams by component mode synthesis", Struct. Eng. Mech., 10(l), 81-92. https://doi.org/10.12989/sem.2000.10.1.081
- Lam, H.F. and Ng, C.T. (2008), "A probabilistic method for the detection of obstructed cracks of beam-type structures using spatial wavelet transform", Probab. Eng. Mech., 23(2-3), 237-245. https://doi.org/10.1016/j.probengmech.2007.12.023
- Lee, J. (2009a), "Identification of multiple cracks in a beam using vibration amplitudes", J. Sound Vib., 326(1-2), 205-212. https://doi.org/10.1016/j.jsv.2009.04.042
- Lee, J. (2009b), "Identification of multiple cracks using natural frequencies", J. Sound Vib., 320(3), 482-490. https://doi.org/10.1016/j.jsv.2008.10.033
- Lee, J.J., Lee, J.W., Yi, J.H., Yun, C.B. and Jung, H.Y. (2005), "Neural networks-based damage detection for bridges considering errors in baseline finite element models", J. Sound Vib., 280(3-5), 555-578. https://doi.org/10.1016/j.jsv.2004.01.003
- Lele, S.P. and Maiti, S.K. (2002), "Modelling of transverse vibration of short beams for crack detection and measurement of crack extension", J. Sound Vib., 257(3), 559-583. https://doi.org/10.1006/jsvi.2002.5059
- Liang, R.Y., Choy, F.K. and Hu, J. (1991), "Detection of cracks in beam structures using measurements of natural frequencies", J. Frankin Institute, 328(4), 505-518. https://doi.org/10.1016/0016-0032(91)90023-V
- Nandwana, B.P. and Maiti, S.K. (1997), "Detection of the location and size of a crack in stepped cantilever beams based on measurements of natural frequencies", J. Sound Vib., 203(3), 435-446. https://doi.org/10.1006/jsvi.1996.0856
- Ostachowicz, W.M. and Krawczuk, M. (1991), "Analysis of the effect of cracks on the natural frequencies of a cantilever beam", J. Sound Vib., 150(2), 191-201. https://doi.org/10.1016/0022-460X(91)90615-Q
- Patil, D.P. and Maiti, S.K. (2003), "Detection of multiple cracks using frequency measurements", Eng. Fract. Mech., 70(12), 1553-1572. https://doi.org/10.1016/S0013-7944(02)00121-2
- Perera, R. and Ruiz, A. (2008), "A multistage FE updating procedure for damage identification in large-scale structures based on multiobjective evolutionary optimization", Mech. Syst. Signal Pr., 22(4), 970-991. https://doi.org/10.1016/j.ymssp.2007.10.004
- Qi, H., Ruan, L.M., Zhang, H.C., Wang, Y.M. and Tan, H.P. (2007), "Inverse radiation analysis of a onedimensional participating slab by stochastic particle swarm optimizer algorithm", Int. J. Therm. Sci., 46(7), 649-661. https://doi.org/10.1016/j.ijthermalsci.2006.10.002
- Ren, W.X. and Chen, H.B. (2010), "Finite element model updating in structural dynamics by using the response surface method", Eng. Struct., 32(8), 2455-2465. https://doi.org/10.1016/j.engstruct.2010.04.019
- Sacks, J., Welch, W.J., Mitchell, T.J. and Wynn, H.P. (1989), "Design and analysis of computer experiments", Stat. Sci., 4(4), 409-435. https://doi.org/10.1214/ss/1177012413
- Sakata, S., Ashida, F. and Zako, M. (2003), "Structural optimization using Kriging approximation", Comput. Methods Appl. Mech. Eng., 192(7-8), 923-939. https://doi.org/10.1016/S0045-7825(02)00617-5
- Sakata, S., Ashida, F. and Zako, M. (2004), "An efficient algorithm for Kriging approximation and optimization with large-scale sampling data", Comput. Methods Appl. Mech. Eng., 193(3-5), 385-404. https://doi.org/10.1016/j.cma.2003.10.006
- Sakata, S., Ashida, F. and Zako, M. (2007), "On applying Kriging-based approximate optimization to inaccurate data", Comput. Meth. Appl. Mech. Eng., 196(13-16), 2055-2069. https://doi.org/10.1016/j.cma.2006.11.004
- Shifrin, E.I. and Ruotolo, R. (1999), "Natural frequencies of a beam with an arbitrary number of cracks", J. Sound Vib., 222(3), 409-423. https://doi.org/10.1006/jsvi.1998.2083
- Shyy, W., Papila, N., Vaidyanathan, R. and Tucker, K. (2001), "Global design optimization for aerodynamics and rocket propulsion components", Prog. Aerosp. Sci., 37(1), 59-118. https://doi.org/10.1016/S0376-0421(01)00002-1
- Simpson, T.W., Poplinski, J.D., Koch, P.N. and Allen, J.K. (2001), "Meta-models for computer-based engineering design: survey and recommendations", Eng. Comput., 17(2), 129-150. https://doi.org/10.1007/PL00007198
- Zheng, D.Y. and Fan, S.C. (2001a), "Natural frequencies of a non-uniform beam with multiple cracks via modied Fourier series", J. Sound Vib., 242(4), 701-717. https://doi.org/10.1006/jsvi.2000.3360
- Zheng, D.Y. and Fan, S.C. (2001b), "Natural frequency changes of a cracked Timoshenko beam by modied Fourier series", J. Sound Vib., 246(2), 297-317. https://doi.org/10.1006/jsvi.2001.3632
- Zitzler, E. and Thiele, L. (1999), "Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach", IEEE T. Evolut. Comput., 3(4), 257-271. https://doi.org/10.1109/4235.797969
Cited by
- Data to decisions: Real-time structural assessment from sparse measurements affected by uncertainty vol.182, 2017, https://doi.org/10.1016/j.compstruc.2016.12.007
- The State-of-the-Art on Framework of Vibration-Based Structural Damage Identification for Decision Making vol.7, pp.5, 2017, https://doi.org/10.3390/app7050497
- Seismic Vulnerability Analysis of RC Bridges Based on Kriging Model 2019, https://doi.org/10.1080/13632469.2017.1323040
- Generalized evolutionary optimum design of fiber-reinforced tire belt structure vol.15, pp.4, 2013, https://doi.org/10.12989/scs.2013.15.4.451
- Surrogate Modeling Approach to Support Real-Time Structural Assessment and Decision Making vol.53, pp.6, 2015, https://doi.org/10.2514/1.J053464
- Calibration of initial cable forces in cable-stayed bridge based on Kriging approach vol.92, 2014, https://doi.org/10.1016/j.finel.2014.08.007
- Crack Parameters Identification Based on a Kriging Surrogate Model for Operating Rotors vol.2018, pp.1875-9203, 2018, https://doi.org/10.1155/2018/9274526
- Adaptive Kriging surrogate model for the optimization design of a dense non-aqueous phase liquid-contaminated groundwater remediation process vol.15, pp.2, 2012, https://doi.org/10.2166/ws.2014.108
- Implementation of Kriging Surrogate Models for Delamination Detection in Composite Structures vol.27, pp.6, 2012, https://doi.org/10.1177/096369351802700604
- An Improved Objective Function for Modal-Based Damage Identification Using Substructural Virtual Distortion Method vol.9, pp.5, 2012, https://doi.org/10.3390/app9050971
- An improved two-step method based on Kriging model for beam structures vol.38, pp.3, 2012, https://doi.org/10.1177/1461348419833586
- Finite element model updating of long-span cable-stayed bridge by Kriging surrogate model vol.74, pp.2, 2012, https://doi.org/10.12989/sem.2020.74.2.157
- Response‐based time‐invariant methods for damage localization on a concrete bridge vol.21, pp.4, 2020, https://doi.org/10.1002/suco.202000013
- A novel reliability analysis method based on Gaussian process classification for structures with discontinuous response vol.75, pp.6, 2012, https://doi.org/10.12989/sem.2020.75.6.771
- Blind-Kriging based natural frequency modeling of industrial Robot vol.74, pp.None, 2012, https://doi.org/10.1016/j.precisioneng.2021.11.008