References
- American Concrete Institute (ACI). (1999), Building code requirements for structural concrete and commentary, ACI 318-99/R-99. Farmington Hills.
- American Institute of Steel Construction (AISC). (2005), "Manual for structural steel buildings: Load and Resistance Factor Design (LRFD)", Chicago.
- Australia Standards (AS). (1998), "AS4100 Steel structures". Sydney: Standards Australia.
- Bahrami, A., Badaruzzaman, W.H.W. and Osman, S.A. (2011), "Nonlinear analysis of concrete-filled steel composite columns subjected to axial loading", Struct. Eng. Mech., An Int/'l Journal, 39(3), 383-398. https://doi.org/10.12989/sem.2011.39.3.383
- CECS 28:90. (1992), "Specification for design and construction of concrete-filled steel tube structures", China Planning Press. (in Chinese)
- Chen, B.C. and Wang, T.L. (2009), "Overview of Concrete Filled Steel Tube Arch Bridges in China", DOI:10.1061/(ASCE) 1084-0680, 14:2 (70).
- China Building Material Industry Standard (JCJ). (1989), "Design and Construction Specifications for concrete filled steel tube structures (JCJ01-89)", Tongji University Press, China. (in Chinese)
- China Electric Power Industry Standard (DL/T). (1999), "Design Specifications for Steel-Concrete Composite Structures (DL/T5085-1999)", China Electric Power Press. (in Chinese)
- Cai, S. (1989), "Calculation and application of concrete-filled steel tubes", China Architecture & Building Press, Beijing. (in Chinese)
- Dai, X. and Lam, D. (2010), "Axial compressive behaviour of stub concrete-filled columns with elliptical stainless steel hollow sections", Steel and Composite Structures, An Int/'l Journal, 10(6), 517-539. https://doi.org/10.12989/scs.2010.10.6.517
- Eurocode 4 (EC4). (2004), "Design of composite steel and concrete structures, Part 1.1: General rules and rules for buildings". Brussels: Commission of European Communities.
- GB 50017. (2003), "Code for Design of Steel Structures", 1st Ed., Ministry of Construction of China, Beijing, China. (in Chinese)
- Goode, C.D. and Lam, D. (2008), "Concrete-filled steel tube columns - tests compared with Eurocode 4", In: Composite Construction VI, July 20-24, Devil's Thumb Ranch, Colorado, USA.
- Gourley, B.C., Tort, C., Denavit, M.D., Schiller, P.H. and Hajjar, J.F. (2008), NSEL Report: "A Synopsis of Studies of the Monotonic and Cyclic Behaviour of Concrete-Filled Steel Tube Members, Connections, and Frames", Report No. NSEL-008.
- Gupta, P.K., Sarda, S.M. and Kumar, M.S. (2007), "Experimental and computational study of concrete filled steel tube columns under axial loads", J. Constr. Steel Res., 63(2), 182-193. https://doi.org/10.1016/j.jcsr.2006.04.004
- Han, L.H. and Yao, G.H. (2003), "Behaviour of concrete-filled hollow structural steel (HSS) columns with preload on the steel tubes", J. Constr. Steel Res., 59(11), 1455-1475. https://doi.org/10.1016/S0143-974X(03)00102-0
- Han, L.H., Zheng, L.Q., He, S.H. and Tao, Z. (2011), "Tests on curved concrete filled steel tube members subjected to axial compression", J. Constr. Steel Res., doi:10.1016/j.jcsr.2011.01.012.
- Hybrid Structure Series 02 (JSCE). (2006), "Guidelines for performance verification of steel-concrete hybrid structures", Committee on Hybrid Structures.
- Johansson, M., Cleason, C., Gylltoft, K. and Akesson, M. (2000), "Structural behaviour of circular composite columns under various means of load application", Proceeding of 6th ASCCS Conference, Los Angeles, USA.
- Johansson, M. and Gylltoft, K. (2002), "Mechanical behaviour of circular steel-concrete composite stub columns", J. Struct. Eng., ASCE, 128(8), 1073-1081. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:8(1073)
- Knowles, R.B. and Park, R. (1969), "Strength of Concrete Filled Steel Tube Columns," Journal of the Structural Division, ASCE, 95(ST12), 2565-2587.
- Kuranovas, A., Goode, D., Kvedaras, A.K. and Zhong, S.T. (2009), "Load-bearing capacity of concrete-filled steel columns", Journal of Civil Engineering and Management, 15(1), 21-33. https://doi.org/10.3846/1392-3730.2009.15.21-33
- Liew, J.Y.R. and Xiong, D.X. (2009), "Effect of preload on the axial capacity of concrete-filled composite columns", J. Constr. Steel Res., 65, 709-722. https://doi.org/10.1016/j.jcsr.2008.03.023
- Manojkumar, V.C., Mattur, C.N. and Kulkarni, S.M. (2010), "Axial strength of circular concrete-filled steel tube columns - DOE approach", J. Constr. Steel Res., 66, 1248-1260. https://doi.org/10.1016/j.jcsr.2010.04.006
- O'Shea, M.D. and Bridge, R.Q. (2000), "Design of circular thin-walled concrete filled steel tubes", J. Struct. Eng., ASCE, 126(11), 1295-1303. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1295)
- O'Shea, M.D. and Bridge, R.Q. (1997), "Tests on circular thin-walled steel tubes filled with medium and high strength concrete", Report No. R755, School of Civil Engineering, University of Sydney, Australia.
- Starossek, U. and Falah, N. (2008), "The interaction of steel tube and concrete core in concrete-filled steel tube columns", in Tube Structures XII, Shen, Chen & Zhao (eds), Taylor & Francis Group, London, ISBN 978-0-415-46853-4, 75-84.
- Wang, Y., Zhang, S. and Guo, L. (2005), "Influence of load conditions on mechanical behaviour of CFST stub columns subjected to axial compression", Journal of Harbin Institute of Technology, 37(1), 40-44.
- Xiamuxi, A. and Hasegawa, A. (2010), "Load-sharing ratio analysis of reinforced concrete filled tubular steel columns", Steel and Composite Structures, An Int/'l Journal, 12(6), 523-540.
- Zha, X.X. (1996), "Investigation on the behaviour of concrete filled steel tube compression-bending-torsion members under the initial stress", PhD thesis, Harbin University of C.E. Architecture.
- Zhu, W.C., Ling, L., Tang, C.A., Kang, Y.M. and Xie, L.M. (2012), "The 3D-numerical simulation on failure process of concrete-filled tubular (CFT) stub columns under uniaxial compression", Computers and Concrete, An Int/'l Journal, 9(4), 257-273. https://doi.org/10.12989/cac.2012.9.4.257
Cited by
- Study on preloading reduction of ultimate load of circular concrete-filled steel tubular columns vol.98, 2016, https://doi.org/10.1016/j.tws.2015.10.015
- Finite Element Analysis on Mechanical Performance of Concrete-Filled Steel Tubular Latticed Column with Initial Stress vol.9, pp.2, 2015, https://doi.org/10.1061/JHTRCQ.0000439
- Inelastic analysis for the post-collapse behavior of concrete encased steel composite columns under axial compression vol.19, pp.5, 2015, https://doi.org/10.12989/scs.2015.19.5.1237
- Mechanical behavior of stirrup-confined rectangular CFT stub columns under axial compression vol.124, 2018, https://doi.org/10.1016/j.tws.2017.12.007
- Experiment on seismic performance of concrete filled steel tubular arch-rib under multi-shaking-tables vol.116, 2017, https://doi.org/10.1016/j.tws.2017.03.020
- Numerical study of circular steel tube confined concrete (STCC) stub columns vol.136, 2017, https://doi.org/10.1016/j.jcsr.2017.05.020
- Experimental study on circular concrete filled steel tubes with and without shear connectors vol.16, pp.1, 2014, https://doi.org/10.12989/scs.2014.16.1.097
- Experiment Study on Influence of Initial Stress in Concrete Filled Steel Tubular Latticed Columns under Axial Load vol.518, pp.1662-7482, 2014, https://doi.org/10.4028/www.scientific.net/AMM.518.170
- Analysis and Design of Elliptical Concrete-Filled Thin-Walled Steel Stub Columns Under Axial Compression vol.18, pp.2, 2018, https://doi.org/10.1007/s13296-018-0002-5
- Behavior of circular thin-walled steel tube confined concrete stub columns vol.23, pp.2, 2012, https://doi.org/10.12989/scs.2017.23.2.229
- Assessment of stress-strain model for UHPC confined by steel tube stub columns vol.63, pp.3, 2012, https://doi.org/10.12989/sem.2017.63.3.371
- Behaviour of bolted connections in concrete-filled steel tubular beam-column joints vol.25, pp.4, 2012, https://doi.org/10.12989/scs.2017.25.4.443
- Seismic behavior of SFRC shear wall with CFST columns vol.28, pp.5, 2012, https://doi.org/10.12989/scs.2018.28.5.527
- Behavior of polygonal concrete-filled steel tubular stub columns under axial loading vol.28, pp.5, 2012, https://doi.org/10.12989/scs.2018.28.5.573
- Numerical simulation and analytical assessment of STCC columns filled with UHPC and UHPFRC vol.70, pp.1, 2012, https://doi.org/10.12989/sem.2019.70.1.013
- Evaluation of structural performance between active and passive preloading systems in circular concrete-filled steel tubes (CFST) vol.194, pp.None, 2012, https://doi.org/10.1016/j.engstruct.2019.05.037
- Evaluation on ultimate load-carrying capacity of concrete-filled steel tubular arch structure with preload vol.22, pp.13, 2012, https://doi.org/10.1177/1369433219850091
- ANFIS-Based Accurate Estimation of the Confinement Effect for Concrete-Filled Steel Tubular (CFST) vol.22, pp.6, 2012, https://doi.org/10.1007/s40815-020-00902-0
- Structural performance of nano-silica based blended CFST stub circular column vol.989, pp.None, 2012, https://doi.org/10.1088/1757-899x/989/1/012003
- Experimental and numerical studies of circular sandwiched concrete axially loaded CFDST short columns vol.230, pp.None, 2012, https://doi.org/10.1016/j.engstruct.2020.111617
- CO2 Emission and Cost Optimization of Concrete-Filled Steel Tubular (CFST) Columns Using Metaheuristic Algorithms vol.13, pp.14, 2012, https://doi.org/10.3390/su13148092
- Shaking table tests on concrete-filled steel tubular-framed building assembled with microcrystalline foam boards vol.34, pp.None, 2012, https://doi.org/10.1016/j.istruc.2021.08.064
- Axial strength prediction of steel tube confined concrete columns using a hybrid machine learning model vol.36, pp.None, 2022, https://doi.org/10.1016/j.istruc.2021.12.054