DOI QR코드

DOI QR Code

Thermal buckling load optimization of laminated plates with different intermediate line supports

  • Topal, Umut (Karadeniz Technical University, Of Faculty of Technology, Department of Civil Engineering)
  • Received : 2012.03.30
  • Accepted : 2012.05.16
  • Published : 2012.09.25

Abstract

This paper deals with critical thermal buckling load optimization of symmetrically laminated four layered angle-ply plates with one or two different intermediate line supports. The design objective is the maximization of the critical thermal buckling load and a design variable is the fibre orientation in the layers. The first order shear deformation theory and nine-node isoparametric finite element model are used for the finite element solution of the laminates. The modified feasible direction (MFD) method is used for the optimization routine. For this purpose, a program based on FORTRAN is used. Finally, the numerical analysis is carried out to investigate the effects of location of the internal line supports, plate aspect ratios and boundary conditions on the optimal designs and the results are compared.

Keywords

References

  1. Akhras, G. and Li, W. C. (2010), "Three-dimensional thermal buckling analysis of piezoelectric antisymmetric angle-ply laminates using finite layer method," Compos. Struct., 92(1), 31-38. https://doi.org/10.1016/j.compstruct.2009.06.010
  2. Autio, M. (2001), "Optimization of coupled thermal-structural problems of laminated plates with lamination parameters," Struct. and Multidiscip. Optim., 21(1), 40-51. https://doi.org/10.1007/s001580050166
  3. Avci, A., Kaya, S. and Daghan, B. (2005), "Thermal buckling of rectangular laminated plates with a hole," J. Reinf. Plast. Comp., 24(3), 259-272. https://doi.org/10.1177/1731684405043554
  4. Chen, B., Gu, Y., Zhao, G., Lin, W., Chang, T. Y. P. and Kuang, J. S. (2003), "Design optimization for structural thermal buckling," J. Therm. Stresses, 26(5), 479-494. https://doi.org/10.1080/713855939
  5. Fares, M. E., Youssif, Y. G. and Hafiz, M. A. (2005), "Multiobjective design and control optimization for minimum thermal postbuckling dynamic response and maximum buckling temperature of composite laminates," Struct. and Multidiscip. Optim., 30(2), 89-100. https://doi.org/10.1007/s00158-004-0490-0
  6. Fares, M. E., Youssif, Y. G. and Hafiz, M. A. (2004), "Structural and control optimization for maximum thermal buckling and minimum dynamic response of composite laminated plates," Int. J. Solids Struct., 41(3-4), 1005-1019. https://doi.org/10.1016/j.ijsolstr.2003.09.047
  7. Ghomshei, M. M. M. and Mahmoudi, A. (2010), "Thermal buckling analysis of cross-ply laminated rectangular plates under nonuniform temperature distribution: A differential quadrature approach," J. Mech. Sci. Tech., 24(12), 2519-2527. https://doi.org/10.1007/s12206-010-0918-y
  8. Gilat, R. and Aboudi, J. (2006), "Thermal buckling of activated shape memory reinforced laminated plates," Smart Mat. Struct., 15(3), 829-838. https://doi.org/10.1088/0964-1726/15/3/020
  9. Huang, N. N. and Tauchert, T. R. (1992), "Thermal buckling of clamped symmetric laminated plates," 13(4), 259-273. https://doi.org/10.1016/0263-8231(92)90024-Q
  10. Kabir, H. R. H., Askar, H. and Chaudhuri, R. A. (2003), "Thermal buckling response of shear flexible laminated anisotropic plates using a three-node isoparametric element," Compos. Struct., 59(2), 173-187. https://doi.org/10.1016/S0263-8223(02)00237-4
  11. Lal, A., Singh, B. N. and Kumar, R. (2009), "Effects of random system properties on the thermal buckling analysis of laminated composite plates," Comput. Struct., 87(17-18), 1119-1128. https://doi.org/10.1016/j.compstruc.2009.06.004
  12. Lee, Y. S., Lee, Y. W., Yang, M. S. and Park, B. S. (1999), "Optimal design of thick laminated composite plates for maximum thermal buckling load," J. Therm. Stress, 22(3), 259-273. https://doi.org/10.1080/014957399280869
  13. Liew, K. M., Yang, J. and Kitipornchai, S. (2004), "Thermal post-buckling of laminated plates comprising functionally graded materials with temperature-dependent properties," J. Appl. Mech., 71, 839-850. https://doi.org/10.1115/1.1795220
  14. Malekzadeh, P., Vosoughi, A. R., Sadeghpour, M. and Vosoughi, H. R. (2012), "Thermal buckling optimization of temperature-dependent laminated composite skew plates," J. Aerospace Eng., In Press.
  15. Mozafari, H., Alias, A. and Kamali F. (2010), "Optimum design of composite plates under thermal buckling loads using imperialist competitive algorithm," Int. J. Comput. Sci. Eng. Tech., 1, 54-58.
  16. Rasid, Z. A., Ayob, A., Zahari, R. Mustapha, F., Majid, D. L. and Varatharajoo, R. (2011), "Thermal buckling and post-buckling improvements of laminated composite plates using finite element method," Key Eng. Mat., 471-472, 536-541. https://doi.org/10.4028/www.scientific.net/KEM.471-472.536
  17. Shiau, L. C., Kuo, S. Y. and Chen C. Y. (2010), "Thermal buckling behavior of composite laminated plates," Compos. Struct., 92, 508-514. https://doi.org/10.1016/j.compstruct.2009.08.035
  18. Singha, M. K., Ramachandra, L. S. and Bandyopadhyay, J. N. (2000), "Optimum design of laminated composite plates for maximum thermal buckling loads," J. Comp. Mat., 34(23), 1982-1997. https://doi.org/10.1177/002199800772661930
  19. Spallino, R. and Thierauf G. (2000), "Thermal buckling optimization of composite laminates by evolution strategies," Comput. and Struct., 78, 691-697. https://doi.org/10.1016/S0045-7949(00)00050-X
  20. Topal, U. and Uzman, U. (2008), "Thermal buckling load optimization of laminated composite plates," Thin- Walled Struct., 46, 667-675. https://doi.org/10.1016/j.tws.2007.11.005
  21. Vosoughi, A. R., Malekzadeh, P., Banan, Mo. R. and Banan, Ma. R. (2012), "Thermal buckling and postbuckling of laminated composite beams with temperature-dependent properties," Int. J. Non-Linear Mech., 47, 96-102. https://doi.org/10.1016/j.ijnonlinmec.2011.11.009
  22. Vosoughi, A. R., Malekzadeh, P., Banan, Mo. R. and Banan, Ma. R. (2011), "Thermal postbuckling of laminated composite skew plates with temperature-dependent properties," Thin-Walled Struct., 49, 913-922. https://doi.org/10.1016/j.tws.2011.02.017
  23. Walker, M., Reiss, T., Adali, S. and Verijenko, V. (1997), "Optimal design of symmetrically laminated plates for maximum buckling temperature," J. Therm. Stress, 20, 21-33. https://doi.org/10.1080/01495739708956089
  24. Yapici, A. (2005), "Thermal buckling behavior of hybrid-composite angle-ply laminated plates with an inclined crack," Mech. Comp. Mat., 41(2), 131-138. https://doi.org/10.1007/s11029-005-0040-x

Cited by

  1. Application of a new extended layerwise approach to thermal buckling load optimization of laminated composite plates vol.14, pp.3, 2013, https://doi.org/10.12989/scs.2013.14.3.283
  2. Dynamic stability analysis of laminated composite plates in thermal environments vol.15, pp.1, 2013, https://doi.org/10.12989/scs.2013.15.1.57
  3. Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre vol.20, pp.5, 2017, https://doi.org/10.12989/sss.2017.20.5.595