DOI QR코드

DOI QR Code

Numerical analysis of center cracked orthotropic fgm plate: Crack and material axes differ by θ°

  • Received : 2012.02.10
  • Accepted : 2012.05.17
  • Published : 2012.08.25

Abstract

In this study, fracture analysis of orthotropic FGM (Functionally Graded Material) plate having center crack is performed, numerically. Material axis arbitrarily oriented and there is an angle ${\theta}^{\circ}$ between material and crack axes. Stress intensity factors at the crack tips for Mode I are calculated using Displacement Correlation Method (DCM). In numerical analysis, effects of material properties and variation of angle ${\theta}^{\circ}$ between material and crack axes on the fracture behavior are investigated for four different boundary conditions. Consequently, it is found that the effect of ${\theta}^{\circ}$ on stress intensity factor depends on variation of material properties.

Keywords

References

  1. ANSYS 12.1 (2009), Academic Teaching Introductory Help Menu.
  2. Ayhan, A.O. (2007), "Stress intensity factors for three-dimensional cracks in functionally graded materials using enriched finite elements", Int. J. Solids Struct., 44(25-26), 8579-8599. https://doi.org/10.1016/j.ijsolstr.2007.06.022
  3. Chalivendra, V.B. (2009), "Mixed-mode crack-tip stress fields for orthotropic functionally graded materials", ACTA Mech., 204(1-2), 51-60. https://doi.org/10.1007/s00707-008-0047-1
  4. Chen, J., Liu, Z., and Zou, Z. (2002), "Transient internal crack problem for a nonhomogeneous orthotropic strip (Mode I)", Int. J. Eng. Sci., 40(15), 1761-1774. https://doi.org/10.1016/S0020-7225(02)00038-1
  5. Dag, S. (2006), "Thermal fracture analysis of orthotropic functionally graded materials using an equivalent domain integral approach", Eng. Fract. Mech., 73(18), 2802-2828. https://doi.org/10.1016/j.engfracmech.2006.04.015
  6. Dag, S., Yildirim, B., and Sarikaya, D. (2007), "Mixed-mode fracture analysis of orthotropic functionally graded materials under mechanical and thermal loads", Int. J. Solids Struct., 44(24), 7816-7840. https://doi.org/10.1016/j.ijsolstr.2007.05.010
  7. Gao, X., Zhang, Ch., Sladek, J., Sladek, V. (2008), "Fracture analysis of functionally graded materials by a BEM", Compos Sci Technol, 68(5), 1209-1215. https://doi.org/10.1016/j.compscitech.2007.08.029
  8. Guo, L.C., Wu, L.Z., Zeng, T., and Ma, L. (2004), "Mode I crack problem for a functionally graded orthotropic strip", Eur. J. Mech. A Solids, 23(2), 219-234. https://doi.org/10.1016/j.euromechsol.2003.12.006
  9. Hongmin, X., Xuefeng, Y., Xiqiao, F., and Yeh, H.Y. (2008), "Dynamic stress intensity factors of a semi-infinite crack in an orthotropic functionally graded material", Mech. Mater., 40(1-2), 37-47. https://doi.org/10.1016/j.mechmat.2007.06.003
  10. Kim, J.H. and Paulino, G.H. (2002a), "Mixed-mode fracture of orthotropic functionally graded materials using finite elements and the modified crack closure method", Eng. Fract. Mech., 69(14-16), 1557-1586. https://doi.org/10.1016/S0013-7944(02)00057-7
  11. Kim, J.H. and Paulino, G.H. (2002b), "Finite element evaluation of mixed mode stress intensity factors in functionally graded materials", Int. J. Numer. Methods Eng., 53, 1903-1935. https://doi.org/10.1002/nme.364
  12. Kim, J.H. and Paulino, G.H. (2003a), "The interaction integral for fracture of orthotropic functionally graded materials: evaluation of stress intensity factors", Int. J. Solids Struct., 40(15), 3967-4001. https://doi.org/10.1016/S0020-7683(03)00176-8
  13. Kim, J.H. and Paulino, G.H. (2003b), "Mixed-mode J-integral formulation and implementation using graded elements for fracture analysis of nonhomogeneous orthotropic materials", Mech. Mater., 35(1-2), 107-128. https://doi.org/10.1016/S0167-6636(02)00159-X
  14. Kim, J.H. and Paulino, G.H. (2005), "Consistent formulations of the interaction integral method for fracture of functionally graded materials", J. Appl. Mech., 72(3), 351-364. https://doi.org/10.1115/1.1876395
  15. Ozturk, M. and Erdogan, F. (1997), "Mode I crack problem in an inhomogeneous orthotropic medium", Int. J. Numer. Eng. Sci., 35(9), 869-883. https://doi.org/10.1016/S0020-7225(97)80005-5
  16. Ozturk, M. and Erdogan, F. (1999), "The mixed mode crack problem in an inhomogeneous orthotropic medium", Int. J. Fract., 98(3-4), 243-261. https://doi.org/10.1023/A:1018352203721
  17. Rao, B.N. and Rahman, S. (2003), "An interaction integral method for analysis of cracks in orthotropic functionally graded materials", Comput. Mechanics, 32(1-2), 40-51. https://doi.org/10.1007/s00466-003-0460-1
  18. Rousseau, C.E. and Tippur, H.V. (2000), "Compositionally graded materials with cracks normal to the elastic gradient", ACTA Mater., 48(16), 4021-4033. https://doi.org/10.1016/S1359-6454(00)00202-0
  19. Shih, C.F., Lorenzi, H.G., and German, M.D. (1976), "Crack extension modeling with singular quadratic isoparametric elements", Int. J. Fracture, 12(4), 647-651. https://doi.org/10.1007/BF00034654
  20. Sills, L.B., Hershkovitz, I., Wawrzynek, P.A., Eliasi, R., and Ingraffea, A.R. (2005), "Methods for calculating stress intensity factors in anisotropic materials: part I-z = 0 is a symmetric plane", Eng. Fract. Mech., 72(15), 2328-2358. https://doi.org/10.1016/j.engfracmech.2004.12.007
  21. Sladek, J., Sladek, V., and Zhang, C. (2005), "An advanced numerical method for computing elastodynamic fracture parameters in functionally graded materials", Comp. Mater. Sci., 32(3-4), 532-543. https://doi.org/10.1016/j.commatsci.2004.09.011
  22. Sladek, J., Sladek, V., Zhang, Ch. (2008a), "Evaluation of the stress intensity factors for cracks in continuously nonhomogeneous solids, part I: Interaction integral", Mech Adv Mater Struc, 15, 438-443. https://doi.org/10.1080/15376490802138351
  23. Sladek, J., Sladek, V., Zhang, Ch. (2008b), "Evaluation of the stress intensity factors for cracks in continuously nonhomogeneous solids, part II: Meshless method", Mech Adv Mater Struc, 15, 444-452. https://doi.org/10.1080/15376490802138369
  24. Tilbrook, M.T., Moon, R.J., and Hoffman, M. (2005), "Finite element simulations of crack propagation in functionally graded materials under flexural loading", Eng. Fract. Mech., 72(16), 2444-2467. https://doi.org/10.1016/j.engfracmech.2005.04.001
  25. Zhou, Y.T., Li, X., and Qin, J.Q. (2007), "Transient thermal stress analysis of orthotropic functionally graded materials with a crack", J. Therm. Stresses, 30(12), 1211-1231. https://doi.org/10.1080/01495730701519607

Cited by

  1. Non-linear study of mode II delamination fracture in functionally graded beams vol.23, pp.3, 2012, https://doi.org/10.12989/scs.2017.23.3.263
  2. Effect of crack location on buckling analysis and SIF of cracked plates under tension vol.35, pp.2, 2012, https://doi.org/10.12989/scs.2020.35.2.215