DOI QR코드

DOI QR Code

Simple equations for the calculation of the temperature within the cross-section of slim floor beams under ISO Fire

  • Zaharia, R. (The Politehnica University of Timisoara) ;
  • Franssen, J.M. (University of Liege)
  • Received : 2012.01.20
  • Accepted : 2012.05.17
  • Published : 2012.08.25

Abstract

The calculation of fire resistance for a composite structural element comprises the calculation of the temperature within its cross-section and of the load bearing capacity, considering the evolution of the steel and concrete mechanical properties, function of the temperature. The paper proposes a method to calculate the bending capacity under ISO fire, for Slim Floor systems using asymmetric steel beams, with a wider lower flange or a narrow upper flange welded onto a half hot-rolled profile. The temperatures in the cross-section are evaluated by means of empirical formulas determined through a parametrical analysis, performed with the special purpose non-linear finite element program SAFIR. Considering these formulas, the bending capacity may be calculated, using an analytical approach to determine the plastic bending moment, for different fire resistance demands. The results obtained with this simplified method are validated through numerical analysis.

Keywords

References

  1. ArcelorMittal Commercial Sections (2008), "Slim Floor, an innovative concept for floors", Long Carbon Europe Sections and Merchant Bars, Esch-sur-Alzette, Luxembourg
  2. Bailey, C. G. (2003) "Large scale test on a composite Slim Floor system", Steel Compos Struct, 3(3), 153-168. https://doi.org/10.12989/scs.2003.3.3.153
  3. Dong, Y. (2009) "Behaviour of full-scale frames with Slim Floor slab construction under exposure in a fire resistance furnace", J Fire Prot Eng, 19(3), 197-220. https://doi.org/10.1177/1042391509104183
  4. Ellobody, E. (2011) "Nonlinear behaviour of unprotected composite Slim Floor steel beams exposed to different fire conditions", Thin Wall Struct, 49(6), 762-771. https://doi.org/10.1016/j.tws.2011.02.002
  5. EN 1992-1-2 (2005) "Eurocode 2-Design of concrete structures. Part 1-2. General rules - Structural Fire Design", CEN, Brussels.
  6. EN 1993-1-2 (2005) "Eurocode 3-Design of steel structures. Part 1-2. General rules - Structural Fire Design", CEN, Brussels.
  7. Fontana, M., Borgogno, W. (1996) "Slim Floor slabs: fire resistance and system behaviour of hollow core slabs on flexible beams", Composite Construction in Steel and Concrete, Proceedings of Engineering Foundation Conference, ASCE, Irsee, Germany.
  8. Franssen, J. M. (2005) "SAFIR. A Thermal/Structural Program Modelling Structures under Fire", Eng J Aisc, 42(3), 143-158.
  9. Kim, H. J., Kim, H. Y., Park, S. Y. (2011) "An experimental study on fire resistance of Slim Floor beam", Appl Mech Mater, 82, 752-757. https://doi.org/10.4028/www.scientific.net/AMM.82.752
  10. Ma, Z., Makelainen, P. (2006) "Structural behaviour of composite Slim Floor frames in fire conditions", J Constr Steel Res, 62(12), 1282-1289. https://doi.org/10.1016/j.jcsr.2006.04.026
  11. Newman, G. M. (1995) "Fire resistance of Slim Floor beams", J Constr Steel Res, 33(1-2), 87-100. https://doi.org/10.1016/0143-974X(94)00016-B
  12. Park, S., Kim, H., Kim, H., Hong, K. (2011) "Fire resistance of the Korean asymmetric Slim Floor beam depending on load ratio", J Asian Archit Build, 10(2), 413-420. https://doi.org/10.3130/jaabe.10.413
  13. PROFILARBED (1995), "RPS Report No 24/95 : Test au feu sur un Plancher type Slim Floor, EMPA/ETH Zurich le 6 aout 1994", Groupe Arcelor, Centre de Recherches, RPS Department, Esch-sur-Alzette, Luxembourg.
  14. Simoes da Silva, Santiago, A., Vila Real, P., Moore, D. (2005), "Behaviour of steel joints under fire loading", Steel Compos Struct, 5(6), 485-513. https://doi.org/10.12989/scs.2005.5.6.485
  15. STC - Swinden Technology Centre (1999), 'The behaviour of Multi-storey steel framed buildings in fire - A European joint research programme", British Steel , Rotherham, U.K.
  16. Wald, F., Simoes da Silva, L., Moore, D., Lennon, T., Chladna, M., Santiago, A., Benes, M., Borges, L. (2005), "Experimental behaviour of steel structure under natural fire", New Steel Construction, 13(3), 24-27.
  17. Wang, Y. C. (1996), "Tensile membrane action in slabs and its application to the Cardington tests", Second Cardington Conference, BRE, Watford, U.K.
  18. Zaharia, R., Duma, D., Vassart, O., Gernay, T., Franssen, J. M. "Simplified fire design for Slim Floor beams", Proceedings of the 6th European Conference on Steel and Composite Structures Eurosteel 2011, Budapest, Hungary, Vol. B, 1539-1544.

Cited by

  1. Fire resistance of DELTABEAM® composite beams: a numerical investigation vol.8, pp.4, 2017, https://doi.org/10.1108/JSFE-05-2016-0003
  2. 10.08: Application of advanced materials for enhancing the fire performance of slim-floors vol.1, pp.2-3, 2017, https://doi.org/10.1002/cepa.306
  3. 10.01: Analytical methods for the prediction of fire resistance of “reinforced” slim floor beams vol.1, pp.2-3, 2017, https://doi.org/10.1002/cepa.299
  4. Moment capacity of cast-iron beams exposed to fire vol.169, pp.10, 2016, https://doi.org/10.1680/jstbu.15.00120
  5. Fire design of slim‐floor beams vol.88, pp.7, 2012, https://doi.org/10.1002/stab.201900030
  6. Practical Design Methods for Fire Resistance of Restrained Cellular Steel Beams vol.19, pp.6, 2012, https://doi.org/10.1007/s13296-019-00248-w
  7. Internally fire protected composite steel-concrete slim-floor beam vol.227, pp.None, 2012, https://doi.org/10.1016/j.engstruct.2020.111447
  8. Analytical Method for the Bending Resistance of Slim Floor Beams with Asymmetric Double-T Steel Section under ISO Fire vol.12, pp.2, 2012, https://doi.org/10.3390/app12020574