DOI QR코드

DOI QR Code

Structural performance of unprotected concrete-filled steel hollow sections in fire: A review and meta-analysis of available test data

  • Received : 2011.10.06
  • Accepted : 2012.01.29
  • Published : 2012.04.25

Abstract

Concrete filled steel hollow structural sections (CFSs) are an efficient, sustainable, and attractive option for both ambient temperature and fire resistance design of columns in multi-storey buildings and are becoming increasingly common in modern construction practice around the world. Whilst the design of these sections at ambient temperatures is reasonably well understood, and models to predict the strength and failure modes of these elements at ambient temperatures correlate well with observations from tests, this appears not to be true in the case of fire resistant design. This paper reviews available data from furnace tests on CFS columns and assesses the statistical confidence in available fire resistance design models/approaches used in North America and Europe. This is done using a meta-analysis comparing the available experimental data from large-scale standard fire tests performed around the world against fire resistance predictions from design codes. It is shown that available design approaches carry a very large uncertainty of prediction, suggesting that they fail to properly account for fundamental aspects of the underlying thermal response and/or structural mechanics during fire. Current North American fire resistance design approaches for CFS columns are shown to be considerably less conservative, on average, than those used in Europe.

Keywords

References

  1. ACI. (2007), ACI 216.1M-07: Standard Method for Determining Fire Resistance of Concrete and Masonry Construction Assemblies, Detroit, USA.
  2. ASCE. (1999), ASCE/SFPE 29: Standard Calculation Method for Structural Fire Protection, Reston, USA.
  3. ASTM. (2007), ASTM E119: Standard test methods for fire tests of building construction and materials, West Conshohocken, USA.
  4. Aribert, J.M., Renaud, C. and Zhao, B. (2008), "Simplified fire design for composite hollow-section columns", In Proceedings of the Institution of Civil Engineers - Structures and Buildings, 161(6), 325-336. doi:10.1680/stbu.2008.161.6.325.
  5. Beyler, C., Beitel, J., Iwankiw, N. and Lattimer, B. (2007), "Fire resistance testing for performance-based fire design of buildings", Fire Research, Massachusetts, USA.
  6. Buchanan, A. (2002), Structural Design for Fire Safety, Chichester: Wiley.
  7. CEN. (2005), BS EN 1994-1-2, Eurocode 4 Design of composite steel and concrete structures Part 1-2: Structural Fire Design, Brussels, Belgium.
  8. CEN. (2008), NA to BS EN 1994-1-2: UK National Annex to Eurocode 4: Design of composite steel and concrete structures - Part 1-2: General rules - Structural fire design, Brussels, Belgium.
  9. CEN. (2009), BS EN 1991-1-2: Eurocode 1: Actions on structures Part 1-2: General Actions - Actions on structures exposed to fire, Brussels, Belgium.
  10. CIDECT. (1976), Fire Resistance of Structural Hollow Sections, Final Report, CIDECT Programme 15 A, Croydon, UK.
  11. CSA. (1994), CAN/CSA-S16.1-M94: Limit states design of steel structures, Toronto, Canada.
  12. Chabot, M., and Lie, T.T. (1992), Experimental studies on the fire resistance of hollow steel columns filled with bar- reinforced concrete - Internal Report No. 628, Ottawa, Canada: IRC-NRC Canada.
  13. Chinese Military. (2000), GJB 4142-2000, part 1: Design code for Concrete Filled Steel Tubes with Square Sections, Beijing, PR China: Chinese PLA Press (in Chinese).
  14. Chung, K.S., Park, S.H. and Choi, S.M. (2008), "Material effect for predicting the fire resistance of concretefilled square steel tube column under constant axial load", J. Constr. Steel Res., 64(12), 1505-1515. doi:10.1016/j.jcsr.2008.01.002.
  15. Communities and Local Government. (2007), Approved Document B - Volume 2 - Buildings other than Dwelling Houses, Buildings, London, UK.
  16. DL/T. (1999), DL/T 5085-1999, Chinese design code for steel-concrete composite structures, Beijing, PR China: Chinese Electricity Press (in Chinese).
  17. Ding, J. and Wang, Y.C. (2008), "Realistic modelling of thermal and structural behaviour of unprotected concrete filled tubular columns in fire", J. Constr. Steel Res., 64(10), 1086-1102. doi:10.1016/j.jcsr. 2007.09.014.
  18. Ding, J., and Wang, Y.C. (2009), "Temperatures in unprotected joints between steel beams and concrete-filled tubular columns in fire", Fire Safety Journal, 44(1), 16-32. doi:10.1016/j.firesaf.2008.02.004.
  19. Edwards, M. (2000), The Performance in Fire of Fully Utilised Concrete Filled SHS Columns with External Fire Protection, In Proceedings of 9th International Symposia on Tubular Structures, Rotterdam.
  20. Espinos, A., Hospitaler, A. and Romero, M.L. (2009), "Fire resistance of axially loaded slender concrete filled steel tubular columns - Development of a three-dimensional numerical model and comparison with Eurocode 4", Acta Polytechnica, 49(1), 39-43.
  21. Grandjean, G., Grimault, J.P. and Petit, L. (1981a), CIDECT 15B Part 1 - Determination de la duree au few des profils creux remplis de beton, Paris, France: CIDECT.
  22. Grandjean, G., Grimault, J.P. and Petit, L. (1981b), CIDECT 15B Part 2 - Determination de la duree au few des profils creux remplis de beton, Paris, France: CIDECT.
  23. Guobiao (SAC). (2005), GB 50045-95 Code for Fire Protection Design of Tall Buildings, Beijing, PR China: National Standard of The People's Republic of China (in Chinese).
  24. Han, L.H., Yang, Y.F. and Xu, L. (2003), "An experimental study and calculation on the fire resistance of concrete-filled SHS and RHS columns", J. Constr. Steel Res., 59(4), 427-452. doi:10. 1016/S0143-974X(02) 00041-X. https://doi.org/10.1016/S0143-974X(02)00041-X
  25. Han, L.H., Zhao, X.L., Yang, Y.F. and Feng, J.B. (2003), "Experimental study and calculation of fire resistance of concrete-filled hollow steel columns", J. Struct. Eng., 129(3), 346. doi:10. 1061/(ASCE)0733-9445(2003)129:3(346). https://doi.org/10.1061/(ASCE)0733-9445(2003)129:3(346)
  26. Hass, R., Ameler, J., Zies, H. and Lorenz, H. (2000), Fire resistance of hollow section composite columns with high strength concrete filling, final report 15P, Brunswick: CIDECT.
  27. Hong, S. and Varma, A.H. (2009), "Analytical modelling of the standard fire behaviour of loaded CFT columns", J. Constr. Steel Res., 65(1), 54-69. doi:10.1016/j.jcsr.2008.04.008.
  28. ISO. (1975), ISO 834: Fire resistance tests-elements of building construction, Geneva, Switzerland.
  29. Kim, D.K., Choi, S.M., Kim, J.H. and Chung, K.S. (2005), "Experimental study on fire resistance of concretefilled steel tube column under constant axial loads", Journal of Steel, 5, 305-313.
  30. Kimura, M., Ohta, H., Kaneko, H. and Kodaira, A. (1990), "Fire resistance of concrete-filled square steel tubular columns subjected to combined loads", J. Struct. Constr. Eng., AIJ, 417, 372-379.
  31. Klingsch, W. and Wittbecker, F.W. (1988), CIDECT 15G - Fire resistance of hollow section composite columns of small cross sections, Dusseldorf, Germany: CIDECT.
  32. Kodur, V.K.R. (1999), "Performance-based fire resistance design of concrete-filled steel columns", J. Constr. Steel Res., 51(1), 21-36. https://doi.org/10.1016/S0143-974X(99)00003-6
  33. Kodur, V.K.R. (2007), "Guidelines for fire resistant design of concrete-filled steel HSS columns-state-of-the-art and research needs", International J. Steel Struct., 7(3), 173-182.
  34. Kodur, V.K.R. and Fike, R. (2009), "Response of concrete filled HSS columns in real fires", AISC Engineering Journal, 46(4), 243-257.
  35. Kodur, V.K.R. and Latour, J.C. (2005), Experimental Studies on the Fire Resistance of Hollow Steel Columns Filled with High-Strength Concrete - Research Report 215, Ottawa, Canada: IRC-NRC Canada.
  36. Kodur, V.K.R. and Lie, T.T. (1995), Experimental Studies on the Fire Resistance of Circular Hollow Steel Columns Filled with Steel-Fibre-Reinforced Concrete - Internal Report No. 691, Ottawa, Canada: IRC-NRC Canada.
  37. Kodur, V.K.R. and Lie, T.T. (1996a), Experimental Studies on the Fire Resistance of Square Hollow Steel Columns Filled with Steel-Fibre-Reinforced Concrete - Internal Report No. 662, Ottawa, Canada: IRC-NRC Canada.
  38. Kodur, V.K.R. and Lie, T.T. (1996b), "Fire resistance of circular steel columns filled with fibre-reinforced concrete", J. Struct. Eng., 122(7), 776-782. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:7(776)
  39. Kordina, K. and Klingsch, W. (1983), Fire resistance of composite columns of concrete filled hollow sections, Report 15C1/C2, Paris, France: CIDECT.
  40. Law, A., Stern-Gottfried, J., Gillie, M. and Rein, G. (2011), "The influence of travelling fires on a concrete frame", Eng. Struct., 33(5), Elsevier Ltd. doi:10.1016/j.engstruct.2011.01.034.
  41. Lennon, T., Moore, D.B., Wang, Y.C. and Bailey, C.G. (2007), Designers' guides to the Eurocodes, London, UK: Thomas Telford Publishing.
  42. Lie, T.T. and Chabot, M. (1992), Experimental Studies on the Fire Resistance of Hollow Steel Columns Filled with Plain Concrete - Internal Report No. 611, Ottawa, Canada: IRC-NRC Canada.
  43. Lu, H., Zhao, X.L. and Han, L.H. (2009), "Fire behaviour of high strength self-consolidating concrete filled steel tubular stub columns", J. Constr. Steel Res., 65(10-11), 1995-2010. doi:10.1016/j.jcsr. 2009.06.013.
  44. Myllymaki, J., Lie, T.T. and Chabot, M. (1994), Fire Resistance Tests of Square Hollow Steel Columns Filled with Reinforced Concrete - Internal Report No. 673, Ottawa, Canada: IRC-NRC Canada.
  45. NBCC. (2005), National Building Code of Canada 2005, Ottawa, Canada: IRC-NRC Canada.
  46. Park, S.H., Song, K., Chung, K.S. and Choi, S.M. (2008), "Characteristics analysis of the performance design equations for the fire resistance of concrete-filled steel tube columns", In Proceedings of the 5th International Conference in Structures In Fire (SiF '08), 584-593. Singapore, May.
  47. Renaud, C. (2004), Improvement and extension of the simple calculation method for fire resistance of unprotected concrete filled hollow columns, CIDET Research Report 15Q. Paris, France: CIDECT.
  48. Renaud, C. and D. Joyeux. (2001), Unprotected Concrete Filled Columns Fire Tests Verification of 15Q - CIDECT Research Report 15R, Paris, France: CIDECT.
  49. Ruddy, J.L., Marlo, J.P., Ioannides, S.A. and Alfawakiri, F. (2003), Steel Design Guide 19: Fire resistance of structural steel framing, Chicago, USA.
  50. Rush, D., Bisby, L., Melandinos, A. and Lane, B. (2011), "Fire resistance design of unprotected concrete filled steel hollow sections: Meta-analysis of available furnace test data", Fire Safety Sci., 10(June), 1549-1562. doi:10.3801/IAFSS.FSS.10-1549.
  51. Sakumoto, Y., Okada, T., Yoshida, M. and Tasaka, S. (1994), "Fire Resistance of Concrete-Filled, Fire-Resistant Steel-Tube Columns", J. Mater. in Civil Eng., 6(2), 169. https://doi.org/10.1061/(ASCE)0899-1561(1994)6:2(169)
  52. Schaumann, P., Kodur, V.K.R. and Bahr, O. (2009), "Fire behaviour of hollow structural section steel columns filled with high strength concrete", J. Constr. Steel Res., 65(8-9), 1794-1802. doi:10.1016/j.jcsr.2009.04.013.
  53. Stanke, J. (1975), Uuber die Auswetung von Ergrebnissen ausgefurhrter Brandversuche mit Schlussfolgerungen und Vorschlag fur ein Versuchprogramm - Report 15C1, Berlin, Germany: CIDECT.
  54. Stern-Gottfried, J., Law, A., Rein, G. and Torero, J. (2010), A performance based methodology using travelling fires for structural analysis. 8th International Conference on Performance-Based Codes & Fire Safety Design Methods, Lund, Sweden: SFPE, June.
  55. Suzuki, T., Kimura, M., Kodaira, A. and Fushimi, M. (1985), "Experimental study on fire resistance of concrete filled square steel columns: Structural behaviour under constant axial force in fire (in Japanese)", Ed. AIJ, Journal of Structural and Construction Engineering, 350, 77-85.
  56. Wang, Y.C. (2005), "Performance of steel-concrete composite structures in fire." Progress in Struct. Eng. Mater., 7(2): 86-102. doi:10.1002/pse.197.
  57. Wang, Y.C. and Davies, J.M. (2003), "An experimental study of the fire performance of non-sway loaded concrete-filled steel tubular column assemblies with extended end plate connections", J. Constr. Steel Res., 59(7), 819-838. doi:10.1016/S0143-974X(02)00092-5.
  58. Wang, Y.C. and Orton, A. (2008), "Fire resistant design of concrete filled tubular steel columns", Struct. Engineer, 7(October), 40-45.
  59. Yin, J., Zha, X.X. and Li, L.Y. (2006), "Fire resistance of axially loaded concrete filled steel tube columns", J. Constr. Steel Res., doi:10.1016/j.jcsr.2005.11.011.
  60. Zha, X.X. (2003), "FE analysis of fire resistance of concrete filled CHS columns", J. Constr. Steel Res., 59(6), 769-779. doi:10.1016/S0143-974X(02)00059-7.

Cited by

  1. Residual capacity of fire-exposed concrete-filled steel hollow section columns vol.100, 2015, https://doi.org/10.1016/j.engstruct.2015.06.039
  2. Furnace tests on unprotected and protected concrete filled structural hollow sections vol.78, 2015, https://doi.org/10.1016/j.firesaf.2015.07.007
  3. Numerical study on temperature distribution of high-strength concrete-filled steel tubes subjected to a fire vol.16, pp.4, 2016, https://doi.org/10.1007/s13296-016-0021-z
  4. Performance of recycled aggregate concrete–filled square steel tubular columns exposed to fire vol.20, pp.9, 2017, https://doi.org/10.1177/1369433216677603
  5. Residual strength capacity of fire-exposed circular concrete-filled steel tube stub columns vol.6, pp.5, 2012, https://doi.org/10.12989/acc.2018.6.5.485