DOI QR코드

DOI QR Code

Stiffened orthotropic corner supported hypar shells: Effect of stiffener location, rise/span ratio and fiber orientaton on vibration behavior

  • Darilmaz, Kutlu (Department of Civil Engineering, Istanbul Technical University)
  • Received : 2011.12.08
  • Accepted : 2012.01.17
  • Published : 2012.04.25

Abstract

In this paper the influence of stiffener location, rise/span ratio and fibre orientation on vibration behavior of corner supported hypar shells is studied by using a four-node hybrid stress finite element. The formulation of the element is based on Hellinger-Reissner variational principle. The element is developed by combining a hybrid plane stress element and a hybrid plate element. Benchmark problems are solved to validate the approach and free vibration response of stiffened orthotropic hypar shells is studied both with respect to fundamental frequency and mode shapes by varying the location of stiffeners, rise/span ratio and fiber orientation.

Keywords

References

  1. Allman, D. J. (1984), "A compatible triangular element including vertex rotations for plane elasticity problems", Comp. Struct., 19(1-2), 1-8. https://doi.org/10.1016/0045-7949(84)90197-4
  2. ANSYS. (1997), Swanson Analysis Systems, Swanson J. ANSYS 5.4. USA.
  3. Bergan, P. G. and Felippa, C. A. (1985), "A triangular membrane element with rotational degrees of freedom", Comp. Methods Appl. Mech. Eng., 50(1), 25-69. https://doi.org/10.1016/0045-7825(85)90113-6
  4. Chakravorty, D., Bandyopadhyay, J.N. and Sinha, P.K. (1995), "Free vibration analysis of point-supported laminated composite doubly curved shells - A finite element approach", Comp. Struct., 54(2), 191-198. https://doi.org/10.1016/0045-7949(94)00329-2
  5. Choi, C. K. and Lee, W. H. (1996), "Versatile variable-node flat-shell element", J. Eng. Mech., 122(5), 432-441. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:5(432)
  6. Civalek, O. (2007), "Linear vibration analysis of isotropic conical shells by discrete singular convolution (DSC)", Struct. Eng. Mech., 25(1), 127-130. https://doi.org/10.12989/sem.2007.25.1.127
  7. Cook, R. D. (1986), "On the Allman triangle and a related quadrilateral element", Comp. Struct., 22(6), 1065-1067. https://doi.org/10.1016/0045-7949(86)90167-7
  8. Darilmaz, K. (2005), "An assumed-stress finite element for static and free vibration analysis of Reissner-Mindlin plates", Struct. Eng. Mech., 19(2), 199-215. https://doi.org/10.12989/sem.2005.19.2.199
  9. Darilmaz, K. ,(2005) "A hybrid 8-node hexahedral element for static and free vibration analysis", Struct. Eng. Mech., 21(5), 571-590. https://doi.org/10.12989/sem.2005.21.5.571
  10. Dogan, A. Arslan, H.M. and Yerli, H.R. (2010), "Effects of anisotropy and curvature on free vibration characteristics of laminated composite cylindrical shallow shells", Struct. Eng. Mech., 35(4), 493-510. https://doi.org/10.12989/sem.2010.35.4.493
  11. Das, H.S. and Chakravorty, D. (2010), "A finite element application in the analysis and design of pointsupported composite conoidal shell roofs: suggesting selection guidelines", The Journal of Strain Analysis for Engineering Design, 45(3), 165-177. https://doi.org/10.1243/03093247JSA582
  12. Ibrahimbegovic, A. Taylor, R.L. and Wison, E.L. (1990), "A robust quadrilateral membrane finite element with drilling degrees of freedom", Int. J. Numer. Methods Eng., 30(3), 445-457. https://doi.org/10.1002/nme.1620300305
  13. Feng, W. Hoa, S.V. and Huang, Q. (1997), "Classification of stress modes in assumed stress fields of hybrid finite elements", Int. J. Numer. Meth. Eng., 40(23), 4313-4339. https://doi.org/10.1002/(SICI)1097-0207(19971215)40:23<4313::AID-NME259>3.0.CO;2-N
  14. Haldar, S. (2008). "Free vibration of composite skewed cylindrical shell panel by finite element method", J. Sound Vib., 311(1-2), 9-19. https://doi.org/10.1016/j.jsv.2007.08.022
  15. Han, S.C. Kanok-Nukulchai, W. and Lee, W.H. (2011), "A refined finite element for first-order plate and shell analysis", Struct. Eng. Mech., 40(2), 191-213 . https://doi.org/10.12989/sem.2011.40.2.191
  16. Leissa, A.W. and Narita, Y. (1984), "Vibrations of corner point supported shallow shells of rectangular planform", Earthquake Engng. Struct. Dynam., 12(5), 651-661. https://doi.org/10.1002/eqe.4290120506
  17. MacNeal, R.H. and Harder, R.L. (1988), "A refined four-noded membrane element with rotational degrees of freedom", Comp. Struct., 28(1), 75-84. https://doi.org/10.1016/0045-7949(88)90094-6
  18. Mukherjee, A. and Mukhopadhyay, M. (1988), "Finite element free vibration of eccentrically stiffened plates", Comp. Struct., 30(6), 1303-1317. https://doi.org/10.1016/0045-7949(88)90195-2
  19. Nanda, N. and Bandyopadhyay, J.N. (2008), "Nonlinear transient response of laminated composite shells", J. Eng. Mech.-ASCE, 134(11), 983-990. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:11(983)
  20. Nayak, A.N. and Bandyopadhyay, J.N. (2002), "On the free vibration of stiffened shallow shells", J. Sound Vib., 255(2), 357-382. https://doi.org/10.1006/jsvi.2001.4159
  21. Pian, T.H.H. (1964), "Derivation of element stiffness matrices by assumed stress distributions", AIAA J., 12, 1333-1336.
  22. Pian, T.H.H. and Chen, D.P. (1983), "On the suppression of zero energy deformation modes". Int. J. Num. Meth. Eng., 19(12), 1741-1752. https://doi.org/10.1002/nme.1620191202
  23. Punch, E.F. and Atluri, S.N. (1984), "Development and testing of stable, isoparametric curvilinear 2 and 3-D hybrid stress elements", Comput. Meth. Appl. Mech. Eng., 47(3), 331-356. https://doi.org/10.1016/0045-7825(84)90083-5
  24. Sahoo, S. and Chakravorty, D. (2008), "Free vibration characteristics of point supported hypar shells-a finite element approach", Advances In Vibration Engineering, 7(2), 197-205.
  25. Sahoo, S. and Chakravorty, D. (2006), "Stiffened composite hypar shell roofs under free vibration:Behaviour and optimization aids", J. Sound Vib., 295(1-2), 362-377. https://doi.org/10.1016/j.jsv.2006.01.012
  26. Sahoo, S. and Chakravorty, D. (2005), "Finite element vibration characteristics of composite hypar shallow shells with various edge supports", J. Vib. Control, 11(10), 1291-1309. https://doi.org/10.1177/1077546305057260
  27. Sahoo, S. and Chakravorty, D. (2008), "Bending of composite stiffened hypar shell roofs under point load", J. Eng. Mech.-ASCE, 134(6), 441-454. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:6(441)
  28. Sinha, G. and Mukhopadhyay, M. (1994), "Finite element free vibration analysis of stiffened shells", J. Sound Vib., 171(4), 529-548. https://doi.org/10.1006/jsvi.1994.1138
  29. Schwarte, J. (1994), "Vibrations of corner point supported rhombic hypar-shells", J. Sound Vib., 175(1), 105-114. https://doi.org/10.1006/jsvi.1994.1314
  30. Wang, X.H. and Redekop, D. (2011). "Free vibration analysis of moderately-thick and thick toroidal shells", Struct. Eng. Mech., 39(4), 449-463. https://doi.org/10.12989/sem.2011.39.4.449
  31. Yunus, S.M. Saigal, S. and Cook, R.D. (1989), "On improved hybrid finite elements with rotational degrees of freedom", Int. J. Numer. Meth. Eng., 28(4), 785-800. https://doi.org/10.1002/nme.1620280405

Cited by

  1. Static and free vibration behaviour of orthotropic elliptic paraboloid shells vol.23, pp.6, 2012, https://doi.org/10.12989/scs.2017.23.6.737
  2. Investigation of the vibration of lattice composite conical shells formed by geodesic helical ribs vol.24, pp.2, 2012, https://doi.org/10.12989/scs.2017.24.2.249
  3. Dynamic behaviour of orthotropic elliptic paraboloid shells with openings vol.63, pp.2, 2012, https://doi.org/10.12989/sem.2017.63.2.225