DOI QR코드

DOI QR Code

Selectivity and structural integrity of a nanofiltration membrane for treatment of liquid waste containing uranium

  • Oliveira, Elizabeth E.M. (Instituto de Engenharia Nuclear (IEN / CNEN)) ;
  • Barbosa, Celina C.R. (Instituto de Engenharia Nuclear (IEN / CNEN)) ;
  • Afonso, Julio C. (Instituto de Engenharia Nuclear (IEN / CNEN))
  • 투고 : 2012.05.17
  • 심사 : 2012.10.02
  • 발행 : 2012.10.25

초록

The performance of a nanofiltration membrane for treatment of a low-level radioactive liquid waste was investigated through static and dynamic tests. The liquid waste ("carbonated water") was obtained during conversion of $UF_6$ to $UO_2$. In the static tests membrane samples were immersed in the waste for 24, 48 or 72 h. The transport properties of the samples (hydraulic permeability, permeate flow, selectivity) were evaluated before and after immersion in the waste. In the dynamic tests the waste was permeated in a permeation flow front system under 0.5 MPa, to determine the selectivity of NF membranes to uranium. The surface layer of the membrane was characterized by zeta potential, field emission microscopy, atomic force spectroscopy and infrared spectroscopy. The static test showed that the pore size distribution of the selective layer was altered, but the membrane surface charge was not significantly changed. 99% of uranium was rejected after the dynamic tests.

키워드

참고문헌

  1. Ambashta, R.D. and Sillanpaa, M.E.T. (2012), "Membrane purification in radioactive waste management: a short review", J. Environ. Radioact., 105, 76-84. https://doi.org/10.1016/j.jenvrad.2011.12.002
  2. ASTM Manual of water and environmental technology, D1426-93 (1995), "The Nessler Method", American Society for Testing Materials, New York.
  3. Bowen, W.R. and Doneva, T.A. (2000), "Characterization of nanofiltration membrane for predictive purposes-use of salts, uncharged solutes and atomic force microscopy", J. Membrane Sci., 126, 91-105.
  4. Boussu, K., Zhang, Y., Cocquyt, J., Van der Meeren, P., Volodin, A., Van Haesendonck, C., Martens, J.A. and Van der Bruggen, B. (2006), "Characterization of polymeric nanofiltration membranes for systematic analysis of membrane performance", J. Membrane Sci., 278(1-2), 418-427. https://doi.org/10.1016/j.memsci.2005.11.027
  5. Chang, E.E., Chung-Huei, L. and Chin-Pao, H. (2012), "A simplified method for elucidating the effect of size exclusion on nanofiltration membrane", Sep. Purif. Technol. 85(2), 1-7. https://doi.org/10.1016/j.seppur.2011.05.002
  6. Chmielewski, A.G. and Harasimowicz, M. (1992), "Influence of gamma and electron irradiation on transport properties of ultrafiltration membrane", Nukleonika, 37, 61-70.
  7. Chmielewski, A.G. and Harasimowicz, M. (1997), "Influence of gamma and electron irradiation on transport properties of nanofiltration and hyperfiltration membranes", Nukleonika, 42, 857-862.
  8. CONAMA-National Brazilian Environmental Council (2005), Directory 357, March 17, 2005, Official Journal, March 18 (in Portuguese).
  9. CNEN-Directory 6.05 (1985), Radioactive wastes management in nuclear installations, CNEN, Brasilia (inPortuguese).
  10. Cunha, K.M.D., Lima, C., Leite, C.V.B., Santos, M., Carneiro, L. and Lima, R.M.G. (2011), "Uranium oxide solubility in simulated lung fluids", J. Occup. Environ. Hyg., 8, D51-D-56. https://doi.org/10.1080/15459624.2011.584038
  11. Ding, Y. and Bikson, B. (2010), "Macro and mesoporous polymeric materials from miscible polysulfone/ polyimide blends by chemical decomposition of polyimides", Polymer, 51, 46-52. https://doi.org/10.1016/j.polymer.2009.11.043
  12. Dulama M., Deneanu, N., Dumitru, E., Popescu, I.V. and Pavelescu, M. (2008), "Treatment of liquid radioactive waste by membranes techniques - needs and future trends", Proceedings of NUCLEAR 2008 annual international conference on sustainable development through nuclear research and education, Pitesti, May, pp. 426-433.
  13. Gra yna, Z.T. (2003), "Radioactive solutions treatment by hybrid complexation UF/NF process", J. Membrane Sci., 225(1-2), 25-39. https://doi.org/10.1016/S0376-7388(03)00261-8
  14. Ladeira, A.C.Q. and Morais, C.A. (2005), "Uranium recovery from industrial effluent by ion exchange - column experiments", Miner. Eng., 18(13-14), 1337-1340. https://doi.org/10.1016/j.mineng.2005.06.012
  15. Lin, K.L., Chu, M.L. and Shieh, M.C. (1987), "Treatment of uranium containg effluents with reverse osmosis process", Desalination, 61(2), 125-136. https://doi.org/10.1016/0011-9164(87)80013-9
  16. Macnaughton, S.J., McCulloch, J.K., Marshall, K. and Ring, R.J. (2002), "Application of nanofiltration to the treatment of uranium mill effluents", in Technologies for the treatment of effluents from uranium mines, mills and tailings, IAEA, Vienna, pp. 55-65.
  17. Mellah, A., Chegouche, S. and Barkat, M. (2007), "The precipitation of ammonium uranyl carbonate (AUC): thermodynamic and kinetic investigations", Hydrometallurgy, 85(2-4), 163-171. https://doi.org/10.1016/j.hydromet.2006.08.011
  18. Mulder, M. (2000), Basic principles of membrane technology, 2nd ed., Kluwer Academic Publishers, Dordrecht.
  19. Nanda, D. Tung, K.L. and Li, Y.L. (2010), "Effect of pH membrane morphology, fouling potential, and filtration performance of nanofiltration membrane for water softening", J. Membrane Sci., 349(1-2), 411-420. https://doi.org/10.1016/j.memsci.2009.12.004
  20. Nath, K. (2008), Membrane separation processes, Prentice-Hall, New Delhi.
  21. Pabby, A.K. (2008), "Membrane techniques for treatment in nuclear waste processing: global experience", Membr. Technol., 11, 9-13.
  22. Raff, O. and Wilken, R.D. (1999), "Removal of dissolved uranium by nanofiltration", Desalination, 122, 147-150. https://doi.org/10.1016/S0011-9164(99)00035-1
  23. Ramachandhran, V. and Misra, B.M. (1982), "Studies on effect of irradiation on semipermeable membranes", J. Appl. Polymer Sci., 27(9), 3427-3435. https://doi.org/10.1002/app.1982.070270919
  24. Rautenbach, R. and Groschl, A. (1990), "Separation potential of nanofiltration membranes", Desalination, 77, 73-84. https://doi.org/10.1016/0011-9164(90)85021-2
  25. Sawin, S.B. (1961), "Analytical use of arsenazo III. Determination of thorium, zirconium, uranium and rare earth elements", Talanta, 8(9), 673-685. https://doi.org/10.1016/0039-9140(61)80164-1
  26. Schafer, A.I., Fane, A.G.. and Waite, T.D. (2005), Nanofiltration: principles and applications, Elsevier, Oxford, 2005.
  27. Seneda, J.A., Figueiredo, F.F., Abrao, A., Carvalho, F.M.S. and Frajndlich, E.U.C. (2001), "Recovery of uranium from the filtrate of ammonium diuranate prepared from uranium hexafluoride", J. Alloys Comp., 323-324, 838-841. https://doi.org/10.1016/S0925-8388(01)01156-2
  28. Skozi, S. Patzay, G., and Weiser, L. (2002), "Characteristics of Thin-film nanofiltration membranes at various pH-values", Desalination, 151(2), 123-129.
  29. Tang, C.Y., Kwon, Young-Nam and Leckie J.O. (2009), "Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes I. FTIR and XPS characterization of polyamide and coating layer chemistry,", Desalination, 242(1-3), 149-167. https://doi.org/10.1016/j.desal.2008.04.003
  30. Tanninen, J., Platt, S., Weiss, A. and Nystrom, M. (2004), "Long-term acid resistance and selectivity of NF membranes in very acidic conditions", J. Membrane Sci., 240(1-2), 11-18. https://doi.org/10.1016/j.memsci.2004.04.006
  31. Tanninen, J., Manttari, M. and Nystrom, M. (2006), "Effect of salt mixture concentration of fraction with NF membranes", J. Membrane Sci., 283(1-2), 57-64. https://doi.org/10.1016/j.memsci.2006.06.012
  32. Verissimo, S., Peinemann, K.V. and Bordado, J. (2006), "Influence of the diamine structure on the nanofiltration performance, surface morphology and surface charge of the composite polyamine membranes", J. Membrane Sci., 279(1-2), 266-275. https://doi.org/10.1016/j.memsci.2005.12.014

피인용 문헌

  1. Study of polyamide composite reverse osmosis membrane degradation in water under gamma rays vol.480, 2015, https://doi.org/10.1016/j.memsci.2015.01.019
  2. Effect of gamma irradiation at intermediate doses on the performance of reverse osmosis membranes vol.124, 2016, https://doi.org/10.1016/j.radphyschem.2015.11.017
  3. Irradiation effects on RO membranes: Comparison of aerobic and anaerobic conditions vol.134, 2016, https://doi.org/10.1016/j.polymdegradstab.2016.09.034