DOI QR코드

DOI QR Code

Gas sparged gel layer controlled cross flow ultrafiltration: A model for stratified flow regime and its validity

  • Khetan, Vivek (Department of Chemical Engineering, Indian Institute of Technology) ;
  • Srivastava, Ashish (Department of Chemical Engineering, Indian Institute of Technology) ;
  • De, Sirshendu (Department of Chemical Engineering, Indian Institute of Technology)
  • Received : 2011.10.14
  • Accepted : 2012.04.28
  • Published : 2012.07.25

Abstract

Gas sparging is one of the techniques used to control the concentration polarization during ultrafiltration. In this work, the effects of gas sparging in stratified flow regime were investigated during gel layer controlling cross flow ultrafiltration in a rectangular channel. Synthetic solution of pectin was used as the gel forming solute. The liquid and gas flow rates were selected such that a stratified flow regime was prevalent in the channel. A mass transfer model was developed for this system to quantify the effects of gas flow rates on mass transfer coefficient (Sherwood number). The results were compared with the case of no gas sparging. Gas sparging led to an increase of mass transfer coefficient by about 23% in this case. The limitation of the developed model was also evaluated and it was observed that beyond a gas flow rate of 20 l/h, the model was unable to explain the experimental observation, i.e., the decrease in permeate flux with flow rate.

Keywords

References

  1. Abdel-Ghani, M.S. (2000), "Cross flow ultrafiltration of an aqueous polymer foam solution produced by gas sparging", J. Membrane Sci., 171, 105-117. https://doi.org/10.1016/S0376-7388(99)00380-4
  2. Belfort, G., Mikulasek, P., Pimbley, J.M. and Chung, K.Y. (1993), "Diagnosis of membrane fouling using a rotating annular filter. 2. Dilute particle suspensions of known particle size", J. Membrane Sci., 77, 23-39. https://doi.org/10.1016/0376-7388(93)85232-L
  3. Bellara, S.R., Cui, Z.F. and Pepper, D.S. (1997), "Fractionation of BSA and lysozyme using gas sparged ultrafiltration in hollow fiber membrane module", Biotechnol. Prog., 13, 869-872. https://doi.org/10.1021/bp9701123
  4. Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (1960), Transport Phenomena, Wiley, New York, USA.
  5. Brennen, C.E. (2005), Fundamentals of Multiphase Flow, Cambridge University Press, London, UK.
  6. Cabassud, C., Laborie, S. and Laine, J.M. (1997), "How slug-flow can improve ultrafiltration flux in organic hollow fibers", J. Membrane Sci., 128, 93-101. https://doi.org/10.1016/S0376-7388(96)00316-X
  7. Cheng, T.W., Yeh, H.M. and Wu, J.H. (1999), "Effects of gas slugs and inclination angle on the ultrafiltration flux in tubular membrane module", J. Membrane Sci., 158, 223-234. https://doi.org/10.1016/S0376-7388(99)00013-7
  8. Cheng, T.W. (2002), "Influence of inclination on gas-sparged crossflow ultrafiltration through an inorganic tubular membrane", J. Membrane Sci., 196, 103-110. https://doi.org/10.1016/S0376-7388(01)00584-1
  9. Chung, K.Y., Bates, R. and Belfort, G. (1993), "Dean vortices with wall flux in a curved channel membrane system: 4. Effect of vortices on permeation fluxs of suspensions in microporous membrane", J. Membrane Sci., 81, 139-150. https://doi.org/10.1016/0376-7388(93)85038-X
  10. Cui, Z.F. and Wright, K.L.T. (1994), "Gas-liquid two-phase crossflow ultrafiltration of dextrans and BSA solution", J. Membrane Sci., 90, 183-189. https://doi.org/10.1016/0376-7388(94)80045-6
  11. Cui, Z.F. and Wright, K.L.T. (1996), "Flux enhancement with gas sparging in downwards crossflow ultrafiltration: performance and mechanism", J. Membrane Sci., 117, 109-116. https://doi.org/10.1016/0376-7388(96)00040-3
  12. Cui, Z.F., Chang, S. and Fane, A.G. (2003), "The use of gas bubbling to enhance membrane processes", J. Membrane Sci., 221, 1-35. https://doi.org/10.1016/S0376-7388(03)00246-1
  13. DaCosta, A.R., Fane, A.G. and Wiley, D.E. (1993), "Ultrafiltration of whey protein solutions in spacer filled flat channels", J. Membrane Sci., 76, 245-254. https://doi.org/10.1016/0376-7388(93)85221-H
  14. De, S., Bhattacharjee, S., Bhattacharya, P.K. and Sharma, A. (1997), "Generalized integral and similarity solution of the concentration profile for osmotic pressure controlled ultrafiltration", J. Membrane Sci., 130, 99-121. https://doi.org/10.1016/S0376-7388(97)00018-5
  15. Delgado, S., X Diaz, V., Vera, L., Diaz, R. and Elmaleh, S. (2004), "Modelling hollow-fibre ultrafiltration of biologically treated wastewater with and without gas sparging", J. Membrane Sci., 228, 55-63. https://doi.org/10.1016/j.memsci.2003.09.011
  16. Ducom, G., Matamoros, H. and Cabassud, C. (2002), "Air sparging for flux enhancement in Nan filtration membranes: application to O/W stabilized and non-stabilised emulsions", J. Membrane Sci., 204, 221-236. https://doi.org/10.1016/S0376-7388(02)00044-3
  17. Ducom, G., Puech, F.P. and Cabassud, C. (2002), "Air sparging with flat sheet nanofiltration: alink between wall shear stresses and flux enhancement", Desalination, 145, 97-102. https://doi.org/10.1016/S0011-9164(02)00392-2
  18. Fane, A.G., Fell, C.J.D. and Kim, K.J. (1985), "The effect of surfactant pretreatment on ultrafiltration of proteins", Desalination, 53, 37-55. https://doi.org/10.1016/0011-9164(85)85051-7
  19. Finnigan, S.M. and Howell, J.A. (1990), "The effect of pulsed flow on ultrafiltration fluxes in a baffled tubular membrane system", Desalination, 79, 181-202. https://doi.org/10.1016/0011-9164(90)85005-U
  20. Ghosh, R. and Cui, Z.F. (1999), "Mass transfer in gas sparged ultrafiltration: upward slug-flow in tubular membranes", J. Membrane Sci., 162, 91-103. https://doi.org/10.1016/S0376-7388(99)00126-X
  21. Ghosh, R. (2006), "Enhancement of membrane permeability by gas sparging in submerged hollow fiber ultrafiltration of macomolecular solutions: Role of module design", J. Membrane Sci., 274, 73-82. https://doi.org/10.1016/j.memsci.2005.08.002
  22. Hartnett, J.P. and Kostic, M. (1989), "Heat transfer to Newtonian and non-Newtonian fluids in rectangular ducts", Adv. Heat Transfer, 19, 247-356. https://doi.org/10.1016/S0065-2717(08)70214-4
  23. Hermann, C.C. (1982), "High frequency excitation and vibration studies on hyperfiltration membranes", Desalination, 42, 329-338. https://doi.org/10.1016/0011-9164(82)80008-8
  24. Imasaka, T., Kanekuni, N., So, H. and Yoshini, S. (1989), "Crossflow filtration of membrane fermentation broth by ceramic membranes", J. Ferment. Bioeng., 68, 200-206. https://doi.org/10.1016/0922-338X(89)90137-2
  25. Imasaka, T., So, H., Matsushita, K., Kurukawa, T. and Kanekuni, N. (1993), "Application of gas-liquid twophase crossflow filtration to pilot-scale methane fermentation", Drying Technol., 11, 769-785. https://doi.org/10.1080/07373939308916863
  26. Kabov, O.A., Chinnov, E.A. and Cheverda, V.V. (2007), "Two-Phase Flow in Short Rectangular Mini-Channel", Microgravity Sci. Technol., XIX-3/4, 44-47.
  27. Kramer, P.W., Yeh, Y.S. and Yasuda, H. (1989), "Low temperature plasma for the preparation of separation membranes", J. Membrane Sci., 46, 1-28. https://doi.org/10.1016/S0376-7388(00)81167-9
  28. Lee, C., Chang, W. and Ju, Y. (1993), "Air slugs entrapped cross flow filtration of bacteria suspension", Biotechnol. Bioeng., 41, 525-530. https://doi.org/10.1002/bit.260410504
  29. Lee, H.J. and Lee, S.Y. (2001), "Pressure drop correlations for two-phase flow within horizontal rectangular channels with small heights", Int. J. Multiphase Flow, 27 (5), 783-796. https://doi.org/10.1016/S0301-9322(00)00050-1
  30. Li, Q.Y., Cui, Z.F. and Pepper, D.S. (1997), "Fractionation of HSA and IgG by gas sparged ultrafiltration", J. Membrane Sci., 136, 181-190. https://doi.org/10.1016/S0376-7388(97)00159-2
  31. Li, Q.Y., Cui, Z.F. and Pepper, D.S. (1997), "Effect of bubble size and frequency on the permeate flux of gas sparged ultrafiltration with tubular membranes", Chem. Eng. J., 67, 71-75. https://doi.org/10.1016/S1385-8947(97)00016-8
  32. Li, Q.Y., Cui, Z.F. and Pepper, D.S. (1998), "Enhancement of ultrafiltration by gas sparging with flat sheet membrane modules", Sep. Purif. Technol., 14, 79-83. https://doi.org/10.1016/S1383-5866(98)00062-8
  33. Llanos, J., Perez, Á. and Canizares, P. (2009),"Water-soluble polymer ultrafiltration process at pilot scale: Study of hydrodynamics and factors limiting flux", J. Membrane Sci., 341, 37-45. https://doi.org/10.1016/j.memsci.2009.05.031
  34. Lockhart, R.W. and Martinelli, R.C. (1949), "Proposed correlation of data for isothermal two-phase, two component flow in pipes", Chem. Eng. Progr., 45(1), 39-48.
  35. Mackley, M.R. and Sherman, N.E. (1993), "Cake filtration mechanisms in steady and unsteady flows", J. Membrane Sci., 77, 113-121. https://doi.org/10.1016/0376-7388(93)85239-S
  36. Mercier, M., Fonade, C. and Lafforgue-Delorme, C. (1997), "How slug flow can enhance the ultrafiltration flux in mineral tubular membranes", J. Membrane Sci., 128, 103-111. https://doi.org/10.1016/S0376-7388(96)00317-1
  37. Mercier, M., Maranges, C., Lafforgue, C., Fonade, C. and Line, C. (2000), "Hydrodynamics of slug-flow applied to cross-flow filtration in narrow tubes", AIChE J., 46, 476-488. https://doi.org/10.1002/aic.690460306
  38. Mishima, K. and Hibiki, T. (1996), "Some characteristics of air-water two-phase flow in small diameter vertical tubes", Int. J. Multiphase Flow, 22, 703-712. https://doi.org/10.1016/0301-9322(96)00010-9
  39. Mourouzidis-Mourouzis, S.A. and Karabelas A.J. (2008), "Whey protein fouling of large pore-size ceramic microfiltration membranes at small cross-flow velocity", J. Membrane Sci., 323, 17-27. https://doi.org/10.1016/j.memsci.2008.05.053
  40. Najarian, S. and Bellhouse, B.J. (1996), "Effect of liquid pulsation on protein fractionation using ultrafiltration processes", J. Membrane Sci., 114, 245-253. https://doi.org/10.1016/0376-7388(96)00004-X
  41. Nystrom, M. and Jarvinen, P. (1991), "Modification of polysulfone ultrafiltration membranes with UV irradiation and hydrophilicity increasing agents", J. Membrane Sci., 60, 275-296. https://doi.org/10.1016/S0376-7388(00)81540-9
  42. Porter, M.C. (2005), Ultrafiltration, in: M. C. Porter (Ed.) Handbook of Industrial Membrane Technology, Crest Publishing House, New Delhi, India, 2005.
  43. Pritchard, M., Howell, J.A. and Field, R.W. (1995), "The ultrafiltration of viscous fluids", J. Membrane Sci., 102, 223-235. https://doi.org/10.1016/0376-7388(94)00309-M
  44. Rai, P., Majumdar, G.C., DasGupta, S. and De, S. (2006), "Modeling of Sucrose Permeation through a Pectin Gel during Ultrafiltration of Depectinized Mosambi (Citrus sinensis (L.) Osbeck) Juice", J. Food Sci., 71(2), E87-94. https://doi.org/10.1111/j.1365-2621.2006.tb08901.x
  45. Rai, P., Majumdar, G.C., DasGupta, S. and De, S. (2007), "Modeling of permeate flux decline of synthetic fruit juice and mosambi juice (Citrus sinensis (L.) Osbeck) in stirred continuous ultrafiltration", LWT Food Sci. Technol., 40, 1765-1773. https://doi.org/10.1016/j.lwt.2007.01.005
  46. Rautenbach, R. and Albrecht, R. (1986), Membrane Processes, John Wiley, New York, USA.
  47. Rosenberg, E., Hepbildikler, S., Kuhne, W. and Winter, G. (2009), "Ultrafiltration concentration of monoclonal antibody solutions: Development of an optimized method minimizing aggregation", J. Membrane Sci., 342, 50-59. https://doi.org/10.1016/j.memsci.2009.06.028
  48. Sarkar, B. and De, S. (2011), "Prediction of permeate flux of turbulent flow in cross flow electric field assisted ultrafiltration", J. Membrane Sci., 369, 77-87. https://doi.org/10.1016/j.memsci.2010.11.043
  49. Steuck, M.J. and Reading, N. (1986), "Porous membranes having hydrophilic surface and processes", US Patent, 4,618,533.
  50. Taha, T. and Cui, Z.F. (2002), "CFD modelling of gas-sparged ultrafiltration in tubular membranes", J. Membrane Sci., 210, 13-27. https://doi.org/10.1016/S0376-7388(02)00360-5
  51. Taha, T., Cheong, W.L., Field, R.W. and Cui, Z.F. (2006), "Gas-sparged ultrafiltration using horizontal and inclined tubular membranes-A CFD study", J. Membrane Sci., 279, 487-494. https://doi.org/10.1016/j.memsci.2005.12.063
  52. Thomas, D.G. (1972), "Forced convection mass transfer in hyperfiltration at high fluxes", Ind. Eng. Chem. Fundam., 12, 396-405.
  53. Wambganss, M.W., Jendrzejczyk, J.A. and France, D.M. (1991), "Two-Phase flow patterns and transition in a small, horizontal, rectangular channel", Int. J. Multiphase flow, 17(3), 327-342. https://doi.org/10.1016/0301-9322(91)90003-L
  54. Wilkes, J.O. (2006), Fluid Mechanics for Chemical Engineers, Prentice Hall, New Jersey, USA.
  55. Wu, C., Zhang, S., Yang, D., Wei, J., Yan, C. and Jian, X. (2006), "Preparation, characterization and application in wastewater treatment of a novel thermal stable composite membrane", J. Membrane Sci., 279, 238-245. https://doi.org/10.1016/j.memsci.2005.11.054
  56. Zhao, H., Price, W.E. and Wallace, G.G. (1993), "Transport of copper (II) across stand alone conducting polymer membranes", Polymer, 34, 16-20. https://doi.org/10.1016/0032-3861(93)90276-G