References
- (2010). ANSYS CFX-Solver Theory Guide, Canonsburg, PA, ANSYS, Inc.
- Benito, J.M. and Richard, I.U. (1996), "Modeling concentration-polarization in reverse osmosis spiral-wound elements", J. Environ. Eng., 122(4), 292-298. https://doi.org/10.1061/(ASCE)0733-9372(1996)122:4(292)
- Berman, A.S. (1953), "Laminar flow in channels with porous walls", J. Appl. Phys., 24(9), 1232-1235. https://doi.org/10.1063/1.1721476
- Bowen, W.R., Mohammad, A.W. and Hilal, N. (1997), "Characterisation of nanofiltration membranes for predictive purposes--use of salts, uncharged solutes and atomic force microscopy", J. Membrane Sci., 126(1), 91-105. https://doi.org/10.1016/S0376-7388(96)00276-1
- Bowen, W.R. and Mukhtar, H. (1996), "Characterisation and prediction of separation performance of nanofiltration membranes", J. Membrane Sci., 112(2), 263-274. https://doi.org/10.1016/0376-7388(95)00302-9
- de Pinho, M.N., Semiao, V. and Geraldes, V. (2002). "Integrated modeling of transport processes in fluid/ nanofiltration membrane systems", J. Membrane Sci., 206(1-2), 189-200. https://doi.org/10.1016/S0376-7388(01)00761-X
- Fletcher, D.F. and Wiley, D.E. (2004), "A computational fluids dynamics study of buoyancy effects in reverse osmosis", J. Membrane Sci., 245(1-2), 175-181. https://doi.org/10.1016/j.memsci.2004.07.023
- Geraldes, V., Semiao, V. and Pinho, M.N.D. (2001), "Flow and mass transfer modelling of nanofiltration", J. Membrane Sci., 191(1-2), 109-128. https://doi.org/10.1016/S0376-7388(01)00458-6
- Geraldes, V., Semiao, V. and Pinho, M.N.D. (2002). "The effect on mass transfer of momentum and concentration boundary layers at the entrance region of a slit with a nanofiltration membrane wall", Chem. Eng. Sci., 57(5), 735-748. https://doi.org/10.1016/S0009-2509(01)00441-9
- Karode, S. K. (2001). "Laminar flow in channels with porous walls, revisited", J. Membrane Sci., 191(1-2), 237-241. https://doi.org/10.1016/S0376-7388(01)00546-4
- Kim, S. and Hoek, E.M.V. (2005), "Modeling concentration polarization in reverse osmosis processes", Desalination, 186(1-3), 111-128. https://doi.org/10.1016/j.desal.2005.05.017
- Kiso, Y., Kon, T., Kitaob, T. and Nishimura, K. (2001), "Rejection properties of alkyl phthalates with nanofiltration membranes", J. Membrane Sci., 182(1-2), 205-214. https://doi.org/10.1016/S0376-7388(00)00567-6
- Kiso, Y., Muroshige, K., Oguchia, T., Hiroseb. M., Oharab, T. and Shintani, T. (2011), "Pore radius estimation based on organic solute molecular shape and effects of pressure on pore radius for a reverse osmosis membrane", J. Membrane Sci., 369(1-2), 290-298. https://doi.org/10.1016/j.memsci.2010.12.005
- Kiso, Y., Muroshige, K., Oguchia, T., Hiroseb. M., Oharab, T. and Shintani, T. (2010), "Effect of molecular shape on rejection of uncharged organic compounds by nanofiltration membranes and on calculated pore radii", J. Membrane Sci., 358(1-2), 101-113. https://doi.org/10.1016/j.memsci.2010.04.034
- Mulder, M. (1991), Basic principles of membrane technology, Dordrecht, Netherlands, Kluwer Academic.
- Porter, M. C., Ed. (1990), Handbook of industrial membrane technology, New Jersey, Noyes Publications.
- Schausberger, P., Norazman, N., Chenb, V. and Friedl, A. (2009), "Simulation of protein ultrafiltration using CFD: Comparison of concentration polarisation and fouling effects with filtration and protein adsorption experiments", J. Membrane Sci., 337(1-2), 1-8. https://doi.org/10.1016/j.memsci.2009.03.022
- Wijmans, J.G., Nakao, S., Van Den Berg, J.W.A., Troelstra, F.R. and Smolders, C.A. (1985), "Hydrodynamic resistance of concentration polarization boundary layers in ultrafiltration", J. Membrane Sci., 22(1), 117-135. https://doi.org/10.1016/S0376-7388(00)80534-7
- Wiley, D.E. and Fletcher, D.F. (2002), "Computational fluid dynamics modelling of flow and permeation for pressure-driven membrane processes", Desalination, 145(1-3), 183-186. https://doi.org/10.1016/S0011-9164(02)00406-X
- Wiley, D.E. and Fletcher, D.F. (2003), "Techniques for computational fluid dynamics modelling of flow in membrane channels", J. Membrane Sci., 211(1), 127-137. https://doi.org/10.1016/S0376-7388(02)00412-X
Cited by
- Computational fluid dynamics modeling and experimental studies of oil-in-water emulsion microfiltration in a flat sheet membrane using Eulerian approach vol.472, 2014, https://doi.org/10.1016/j.memsci.2014.08.036
- A review of computational fluid dynamics applications in pressure-driven membrane filtration vol.13, pp.2, 2014, https://doi.org/10.1007/s11157-013-9327-x