DOI QR코드

DOI QR Code

Prediction of solute rejection and modelling of steady-state concentration polarisation effects in pressure-driven membrane filtration using computational fluid dynamics

  • Received : 2011.10.07
  • Accepted : 2012.02.10
  • Published : 2012.03.25

Abstract

A two-dimensional (2D) steady state numerical model of concentration polarisation (CP) phenomena in a membrane channel has been developed using the commercially available computational fluid dynamics (CFD) package CFX (Ansys, Inc., USA). The model incorporates the transmembrane pressure (TMP), axially variable permeate flux, variable diffusivity and viscosity, and osmotic pressure effects. The model has been verified against several benchmark analytical and empirical solutions from the membrane literature. Additionally, the model is able to predict the rejection of an arbitrary solute by the membrane using a pore model, given some basic knowledge of the geometry of the solute molecule or particle, and the membrane pore geometry. This allows for predictive design of membrane systems without experimental determination of the membrane rejection for the specified operating conditions. A demonstration of the model is presented against experimental results for two uncharged test compounds (sucrose and PEG1000) from the literature. The model will be extended to incorporate charge effects, transient simulations, three-dimensional (3D) geometry and turbulent effects in future work.

Keywords

References

  1. (2010). ANSYS CFX-Solver Theory Guide, Canonsburg, PA, ANSYS, Inc.
  2. Benito, J.M. and Richard, I.U. (1996), "Modeling concentration-polarization in reverse osmosis spiral-wound elements", J. Environ. Eng., 122(4), 292-298. https://doi.org/10.1061/(ASCE)0733-9372(1996)122:4(292)
  3. Berman, A.S. (1953), "Laminar flow in channels with porous walls", J. Appl. Phys., 24(9), 1232-1235. https://doi.org/10.1063/1.1721476
  4. Bowen, W.R., Mohammad, A.W. and Hilal, N. (1997), "Characterisation of nanofiltration membranes for predictive purposes--use of salts, uncharged solutes and atomic force microscopy", J. Membrane Sci., 126(1), 91-105. https://doi.org/10.1016/S0376-7388(96)00276-1
  5. Bowen, W.R. and Mukhtar, H. (1996), "Characterisation and prediction of separation performance of nanofiltration membranes", J. Membrane Sci., 112(2), 263-274. https://doi.org/10.1016/0376-7388(95)00302-9
  6. de Pinho, M.N., Semiao, V. and Geraldes, V. (2002). "Integrated modeling of transport processes in fluid/ nanofiltration membrane systems", J. Membrane Sci., 206(1-2), 189-200. https://doi.org/10.1016/S0376-7388(01)00761-X
  7. Fletcher, D.F. and Wiley, D.E. (2004), "A computational fluids dynamics study of buoyancy effects in reverse osmosis", J. Membrane Sci., 245(1-2), 175-181. https://doi.org/10.1016/j.memsci.2004.07.023
  8. Geraldes, V., Semiao, V. and Pinho, M.N.D. (2001), "Flow and mass transfer modelling of nanofiltration", J. Membrane Sci., 191(1-2), 109-128. https://doi.org/10.1016/S0376-7388(01)00458-6
  9. Geraldes, V., Semiao, V. and Pinho, M.N.D. (2002). "The effect on mass transfer of momentum and concentration boundary layers at the entrance region of a slit with a nanofiltration membrane wall", Chem. Eng. Sci., 57(5), 735-748. https://doi.org/10.1016/S0009-2509(01)00441-9
  10. Karode, S. K. (2001). "Laminar flow in channels with porous walls, revisited", J. Membrane Sci., 191(1-2), 237-241. https://doi.org/10.1016/S0376-7388(01)00546-4
  11. Kim, S. and Hoek, E.M.V. (2005), "Modeling concentration polarization in reverse osmosis processes", Desalination, 186(1-3), 111-128. https://doi.org/10.1016/j.desal.2005.05.017
  12. Kiso, Y., Kon, T., Kitaob, T. and Nishimura, K. (2001), "Rejection properties of alkyl phthalates with nanofiltration membranes", J. Membrane Sci., 182(1-2), 205-214. https://doi.org/10.1016/S0376-7388(00)00567-6
  13. Kiso, Y., Muroshige, K., Oguchia, T., Hiroseb. M., Oharab, T. and Shintani, T. (2011), "Pore radius estimation based on organic solute molecular shape and effects of pressure on pore radius for a reverse osmosis membrane", J. Membrane Sci., 369(1-2), 290-298. https://doi.org/10.1016/j.memsci.2010.12.005
  14. Kiso, Y., Muroshige, K., Oguchia, T., Hiroseb. M., Oharab, T. and Shintani, T. (2010), "Effect of molecular shape on rejection of uncharged organic compounds by nanofiltration membranes and on calculated pore radii", J. Membrane Sci., 358(1-2), 101-113. https://doi.org/10.1016/j.memsci.2010.04.034
  15. Mulder, M. (1991), Basic principles of membrane technology, Dordrecht, Netherlands, Kluwer Academic.
  16. Porter, M. C., Ed. (1990), Handbook of industrial membrane technology, New Jersey, Noyes Publications.
  17. Schausberger, P., Norazman, N., Chenb, V. and Friedl, A. (2009), "Simulation of protein ultrafiltration using CFD: Comparison of concentration polarisation and fouling effects with filtration and protein adsorption experiments", J. Membrane Sci., 337(1-2), 1-8. https://doi.org/10.1016/j.memsci.2009.03.022
  18. Wijmans, J.G., Nakao, S., Van Den Berg, J.W.A., Troelstra, F.R. and Smolders, C.A. (1985), "Hydrodynamic resistance of concentration polarization boundary layers in ultrafiltration", J. Membrane Sci., 22(1), 117-135. https://doi.org/10.1016/S0376-7388(00)80534-7
  19. Wiley, D.E. and Fletcher, D.F. (2002), "Computational fluid dynamics modelling of flow and permeation for pressure-driven membrane processes", Desalination, 145(1-3), 183-186. https://doi.org/10.1016/S0011-9164(02)00406-X
  20. Wiley, D.E. and Fletcher, D.F. (2003), "Techniques for computational fluid dynamics modelling of flow in membrane channels", J. Membrane Sci., 211(1), 127-137. https://doi.org/10.1016/S0376-7388(02)00412-X

Cited by

  1. Computational fluid dynamics modeling and experimental studies of oil-in-water emulsion microfiltration in a flat sheet membrane using Eulerian approach vol.472, 2014, https://doi.org/10.1016/j.memsci.2014.08.036
  2. A review of computational fluid dynamics applications in pressure-driven membrane filtration vol.13, pp.2, 2014, https://doi.org/10.1007/s11157-013-9327-x