DOI QR코드

DOI QR Code

Continuous ion-exchange membrane electrodialysis of mother liquid discharged from a salt-manufacturing plant and transport of Cl- ions and SO42- ions

  • Received : 2011.08.11
  • Accepted : 2012.01.16
  • Published : 2012.01.25

Abstract

Mother liquid discharged from a salt-manufacturing plant was electrodialyzed at 25 and $40^{\circ}C$ in a continuous process integrated with $SO_4{^{2-}}$ ion low-permeable anion-exchange membranes to remove $Na_2SO_4$ and recover NaCl in the mother liquid. Performance of electrodialysis was evaluated by measuring ion concentration in a concentrated solution, permselectivity coefficient of $SO_4{^{2-}}$ ions against $Cl^-$ ions, current efficiency, cell voltage, energy consumption to obtain one ton of NaCl and membrane pair characteristics. The permselectivity coefficient of $SO_4{^{2-}}$ ions against $Cl^-$ ions was low enough particularly at $40^{\circ}C$ and $SO_4{^{2-}}$ transport across anion-exchange membranes was prevented successfully. Applying the overall mass transport equation, $Cl^-$ ion and $SO_4{^{2-}}$ ion transport across anion-exchange membranes is evaluated. $SO_4{^{2-}}$ ion transport number is decreased due to the decrease of electro-migration of $SO_4{^{2-}}$ ions across the anion-exchange membranes. $SO_4{^{2-}}$ ion concentration in desalting cells becomes higher than that in concentration cells and $SO_4{^{2-}}$ ion diffusion is accelerated across the anion-exchange membranes from desalting cells toward concentrating cells.

Keywords

References

  1. Amara, M. and Kerdjiodj, H. (2007), "A modified anion-exchange membrane applied to purification of effluent containing different anions. Pre-treatment before desalination", Desalination, 206(1-3), 205-209. https://doi.org/10.1016/j.desal.2006.02.067
  2. Demin, A.V. and Zabolotskii, V.I. (2008), "Model verification of limiting concentration by electrodialysis of an electrolyte solution", Russ. J. Electrochem., 44(9), 1140-1146. (published in Elektrokhimiya, 44(9), 1140-1146.
  3. Dunlop, P.J. (1957), "A study of interacting flows in diffusion of the system reffinose-KCl-$H_{2}O$ at $25^{\circ}$", J. Phys. Chem., 61, 994-1000. https://doi.org/10.1021/j150553a035
  4. Dunlop, P.J. and Gosting, L.J. (1959), "Use of diffusion and thermodynamics data to test the Onsager reciprocal relation for isothermal diffusion in the system NaCl-KCl-$H_{2}O$ at $25^{\circ}C$", J. Phys. Chem., 63(1), 86-93. https://doi.org/10.1021/j150571a022
  5. Egawa, I., Ehara, R., Oda, T. and Ogawa, S. (1968), Salt production method, JP Patent, S43-7838.
  6. Grigorchk, O.V., Vasil'eva, V.I., Shaposhnik, V.A. and Kuz'minykh, V.A. (2003), "Mutual effect of concentration fields in solutions of deionization and concentration compartments during electrodialysis with ion-exchange membranes", Russ. J. Electrochem., 39(7), 777-783. https://doi.org/10.1023/A:1024886304798
  7. Hani, H., Nishihara, H. and Oda, Y. (1961), Anion-exchange membrane having permselectivity between anions, JP Patent, S36-15258.
  8. Huang, T.C. and Yu, I.Y. (1988), "Correlation of ionic transfer rate in electrodialysis under limiting current density conditions, J. Membrane Sci., 35(2), 193-206. https://doi.org/10.1016/S0376-7388(00)82443-6
  9. Inamori. T. and Yamamoto, T. (1980), Removing method of calcium chlorides in bittern, JP Patent S55-7505.
  10. Kabay, N., Ipek, O., Kahveci, H. and Yuksel, M. (2006), "Effect of salt combination on separation of monovalent and divalent salts by electrodialysis", Desalination, 198(1-3), 84-91. https://doi.org/10.1016/j.desal.2006.09.013
  11. Kabay, N., Kahveci, H., Ipek, O. and Yuskel, M. (2006), "Separation of monovalent and divalent ions from ternary mixtures by electrodialysis", Desalination, 198(1-3), 74-83. https://doi.org/10.1016/j.desal.2006.09.012
  12. Kadota, Y., Murakoshi, M. and Kawate, H. (1981), Treating method of brine, JP Patent S56-367.
  13. Koter, S., Kultys, M. and Gilewicz-Lukasik, B. (2011), "Modling the electric transport of HCl and $H_{3}PO_{4}$ mixture through anion-exchange membranes", Membrane Water Treatment, 2(3), 187-205. https://doi.org/10.12989/mwt.2011.2.3.187
  14. McClintock, R., Neihof, R. and Sollner, K. (1960), "Relative rates of electromigration of different ions of the same charge across permselective membranes", J. Electrochem. Soc., 107(4), 315-324. https://doi.org/10.1149/1.2427687
  15. Mihara, K., Misumi, T., Miyauchi, H. and Ishida, Y. (1970), Anion-exchange membrane having excellent specific permselectivity between anions, JP Patent, S45-19980, S45-30693.
  16. Mihara, K., Misumi, T., Miyauchi, H. and Ishida, I. (1972), Production of a cation-exchange membrane having excellent specific permselectivity between cations, JP Patent, S47-3081.
  17. Mizutani, Y., Yamane, R. and Sata, T. (1971a), Electrodialysis for transporting selectively smaller charged cations, JP Patent, S46-23607.
  18. Mizutani, Y., Yamane, R., Sata, T. and Izuo, T. (1971b), Permselectivity treatment of a cation-exchange membrane, JP Patent, S46-42083.
  19. Mohamadi, T., Razmi, A. and Sadradeh, M. (2004), "Effect of operating parameters on $Pb^{2+}$ separation from waste water using electrodialysis", Desalination, 167(15), 379-385. https://doi.org/10.1016/j.desal.2004.06.150
  20. Nikonenko, V.V., Pismenskaya, N.D., Belova, E.I., Sistat, P., Huguet, P., Pourcelly, G. and Larchet, C. (2010), "Intensive current transfer in membrane systems: Modelling, mechanisms and application in electrodialysis", Adv. Colloid Interface Sci., 160(1-2), 101-123. https://doi.org/10.1016/j.cis.2010.08.001
  21. Oren, Y. and Litan, A. (1974), "The state of the solution-membrane interface during ion transport across an ionexchange membrane", J. Phys. Chem., 78(18), 1805-1811. https://doi.org/10.1021/j100611a007
  22. Quemeneur, F., Schlumpf, J.P., Firdaous, L., Stitou, M., Maleriat, J.P. and Jaouen, P. (2002), "Modification of ionic composition of natural salt-waters by electrodialysis", Desalination, 149(1-3), 411-416. https://doi.org/10.1016/S0011-9164(02)00765-8
  23. Rubinstein, I. (1990), "Theory of concentration polarization effects in electrodialysis on counter-ion selectivity of ion-exchange membranes with differing counter-ion distribution coefficients", J. Chem. Soc. Faraday Trans., 86(10), 1857-1861. https://doi.org/10.1039/ft9908601857
  24. Sadrzadeh, M., Razmi, A. and Mohammadi, T. (2007), "Separation of monovalent, divalent and trivalent ions from wastewater at various operating conditions using electrodialysis", Desalination, 205(1-3), 53-61. https://doi.org/10.1016/j.desal.2006.04.039
  25. Sata, T, Yamaguchi, T., Kawamura, K. and Matsusaki, K. (1997), "Transport numbers of various anions relative to chloride ions in modified anion-exchange membranes during electrodialysis", J. Chem. Soc. Faraday Trans., 93(3), 457-462. https://doi.org/10.1039/a606373j
  26. Sata, T. (2004), Ion Exchange Membranes, Royal Soc. Chem. Cambridge, pp. 135-202.
  27. Tanaka, Y. (2005), "Limiting current density of an ion-exchange membrane and of an electrodialyzer", J. Membrane Sci., 266(1-2), 6-17. https://doi.org/10.1016/j.memsci.2005.05.005
  28. Tanaka, Y. (2006), "Irreversible thermodynamics and overall mass transport in ion-exchange membrane electrodialysis", J. Membrane Sci., 281(1-2), 517-531. https://doi.org/10.1016/j.memsci.2006.04.022
  29. Tanaka, Y. (2010), "A computer simulation of ion exchange membrane electrodialysis for concentration of seawater", Membrane Water Treatment, 1(1), 13-37. https://doi.org/10.12989/mwt.2010.1.1.013
  30. Tanaka, Y. and Murakami, M. (1988), Production method of refined salt, JP Patent S63-282114.
  31. Tanaka, Y. and Seno, M. (1981), "Treatment of ion exchange membranes to decrease divalent ion permeability", J. Membrane Sci., 8(2), 115-127. https://doi.org/10.1016/S0376-7388(00)82086-4
  32. Turek, M., Dydo, P. and Was, J. (2007), "High efficiency electrodialysis reversal of concentrated calcium sulfate and calcium carbonate solutions", Desalination, 205(1-3), 62-66. https://doi.org/10.1016/j.desal.2006.04.040
  33. Tsunoda, Y., Murakoshi, M. and Kawate, H. (1981), Treating method of brine, JP Patent, S56-367.
  34. Zabolotsky, V. I., Nikonenko, V. V., Pismenskaya, N. D., Laktinov, E. V., Urtenov, M. K., Strathmann, H., Wessling, M. and Koops, G. H. (1998), "Coupled transport phenomena in overlimiting current electrodialysis", Sep. and Pur. Tech., 14(1-3), 255-267. https://doi.org/10.1016/S1383-5866(98)00080-X

Cited by

  1. Transport-limited water splitting at ion-selective interfaces during concentration polarization vol.89, pp.4, 2014, https://doi.org/10.1103/PhysRevE.89.042405
  2. Batch ion-exchange membrane electrodialysis of mother liquid discharged from a salt-manufacturing process. Experiment and simulation vol.156, 2015, https://doi.org/10.1016/j.seppur.2015.10.013
  3. Desalting of tobacco extract using electrodialysis vol.7, pp.4, 2016, https://doi.org/10.12989/mwt.2016.7.4.341
  4. Development of a predictive model of the limiting current density of an electrodialysis process using response surface methodology vol.7, pp.2, 2016, https://doi.org/10.12989/mwt.2016.7.2.127
  5. Phosphate pre-concentration from municipal wastewater by selectrodialysis: Effect of competing components vol.141, 2015, https://doi.org/10.1016/j.seppur.2014.11.017
  6. Concentration distribution along the electrodialyzer vol.341, 2014, https://doi.org/10.1016/j.desal.2014.02.040
  7. Desalting of papermaking tobacco sheet extract using selective electrodialysis vol.8, pp.4, 2012, https://doi.org/10.12989/mwt.2017.8.4.381