DOI QR코드

DOI QR Code

A novel method of surface modification to polysulfone ultrafiltration membrane by preadsorption of citric acid or sodium bisulfite

  • Wei, Xinyu (Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University) ;
  • Wang, Zhi (Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University) ;
  • Wang, Jixiao (Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University) ;
  • Wang, Shichang (Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University)
  • 투고 : 2011.05.17
  • 심사 : 2011.10.29
  • 발행 : 2012.01.25

초록

In membrane processes, various agents are used to enhance, protect, and recover membrane performance. Applying these agents in membrane modification could potentially be considered as a simple method to improve membrane performance without additional process. Citric acid (CI) and sodium bisulfite (SB) are two chemicals that are widely used in membrane feed water pretreatment and cleaning processes. In this work, preadsorptions of CI and SB were developed as simple methods for polysulfone ultrafiltration membrane modification. It was found that hydrogen bonding and Van Der Waals attraction could be responsible for the adsorptions of CI and SB onto membranes, respectively. After modification with CI or SB, the membrane surfaces became more hydrophilic. Membrane permeability improved when modified by SB while decreased a little when modified by CI. The modified membranes had an increase in PEG and BSA rejections and better antifouling properties with higher flux recovery ratios during filtration of a complex pharmaceutical wastewater. Moreover, membrane chlorine tolerance was elevated after modification with either agent, as shown by the mechanical property measurements.

키워드

참고문헌

  1. Al-Amoudi, A. and Lovitt, R.W. (2007), "Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency", J. Membrane Sci., 303(1-2), 4-28. https://doi.org/10.1016/j.memsci.2007.06.002
  2. Basri, H. Ismail, A.F. Aziz, M. (2011), "Polyethersulfone (PES) ultrafiltration (UF) membranes loaded with silver nitrate for bacteria removal", Membrane Water Treatment, An Int'l Journal 2, 1. https://doi.org/10.12989/mwt.2011.2.1.001
  3. Boributh, S. Chanachai, A. and Jiraratananon, R. (2009), "Modification of PVDF membrane by chitosan solution for reducing protein fouling", J. Membrane Sci., 342(1-2), 97-104. https://doi.org/10.1016/j.memsci.2009.06.022
  4. Brink, L.E.S. Elbers, S.J.G. Robbertsen, T. and Both, P. (1993), "The anti-fouling action of polymers preadsorbed on ultrafiltration and microfiltration membranes", J. Membrane Sci., 76(2-3), 281-291. https://doi.org/10.1016/0376-7388(93)85225-L
  5. Causserand, C. Rouaix, S. Lafaille, J.-P. and Aimar, P. (2008), "Ageing of polysulfone membranes in contact with bleach solution: Role of radical oxidation and of some dissolved metal ions", Chemical Engineering and Processing, 47(1), 48-56. https://doi.org/10.1016/j.cep.2007.08.013
  6. Chinpa, W. Quemener, D. Beche, E. Jiraratananon, R. and Deratani A. (2010), "Preparation of poly(etherimide) based ultrafiltration membrane with low fouling property by surface modification with poly(ethylene glycol)", J. Membrane Sci., 365(1-2), 89-97. https://doi.org/10.1016/j.memsci.2010.08.040
  7. Cheryan, M. (1998), Ultrafiltration and Microfiltration Handbook, Technomic Publishing Company, Inc., USA.
  8. Christian, S.D. Bhat, S.N. Tucker, E.E. Scamehorn, J.E. and El-Sayed, D.A. (1998), "Micellar-enhanced ultrafiltration of chromate anion from aqueous streams", AIChE J., 34(2), 189-194.
  9. Crozes, G. Anselme, C. and Mallevialle, J. (1993), "Effect of adsorption of organic matter on fouling of ultrafiltration membranes", J. Membrane Sci., 84(1-2), 61-77. https://doi.org/10.1016/0376-7388(93)85051-W
  10. Doulia, D. Tragardh, G. and Gekas, V. (1997), "Interaction behaviour in ultrafiltration of nonionic surfactants Part II. Static adsorption below CMC", J. Membrane Sci., 123(1), 133-142. https://doi.org/10.1016/S0376-7388(96)00211-6
  11. Duan, M. Wang, Z. Xu, J. Wang, J. and Wang, S. (2010), "Inuence of hexamethyl phosphoramide on polyamide composite reverse osmosis membrane performance", Separation and Purication Technolog., 75, 145-155. https://doi.org/10.1016/j.seppur.2010.08.004
  12. Fan, Z. Wang, Z. Duan, M. Wang, J. and Wang, S. (2008), "Preparation and characterization of polyaniline/ polysulfone nanocomposite ultrafiltration membrane", J. Membrane Sci., 310(1-2), 402-408. https://doi.org/10.1016/j.memsci.2007.11.012
  13. Fan, Z. Wang, Z. Sun, N. Wang, J. and Wang, S. (2008), "Performance improvement of polysulfone ultrafiltration membrane by blending with polyaniline nanofibers", J. Membrane Sci., 320(1-2), 363-371. https://doi.org/10.1016/j.memsci.2008.04.019
  14. Field, R. Hang, S. and Arnot, T. (1994), "The influence of surfactant on water flux through microfiltration membranes", J. Membrane Sci., 86(3), 291-304. https://doi.org/10.1016/0376-7388(93)E0165-G
  15. Gabelich, C.J. Frankin, J.C. Gerringer, F.W. Ishida, K.P. and Suffet, I.H. (2005), "Enhanced oxidation of polyamide membranes using monochloramine and ferrous iron", J. Membrane Sci., 258(1-2), 64-70. https://doi.org/10.1016/j.memsci.2005.02.034
  16. Gaudichet-Maurin, E. and Thominette, F. (2006), "Aging of PS UF membrane in contact with bleach solutions", J. Membrane Sci., 282, 198-204. https://doi.org/10.1016/j.memsci.2006.05.023
  17. Gitis, V. Haught, R.C. Clark, R.M. Gun, J. and Lev, O. (2006), "Application of nanoscale probes for the evaluation of the integrity of ultrafiltration membranes", J. Membrane Sci., 276(1-2), 185-192. https://doi.org/10.1016/j.memsci.2005.09.055
  18. Guo, H. and Ulbricht, M. (2010), "Surface modification of polypropylene microfiltration membrane via entrapment of an amphiphilic alkyl oligoethyleneglycolether", J. Membrane Sci., 349(1-2), 312-320. https://doi.org/10.1016/j.memsci.2009.11.062
  19. Hosseini, S.M. Madaeni, S.S. Khodabakhshi, A.R. and Zendehnam, A. (2010), "Preparation and surface modification of PVC/SBR heterogeneous cation exchange membrane with silver nanoparticles by plasma treatment", J. Membrane Sci., 365(1-2), 438-446. https://doi.org/10.1016/j.memsci.2010.09.043
  20. Iza, M. Woerly, S. Danumah, C. Kaliaguine, S. Bousmina, M. (2005), "Determination of pore size distribution for mesoporous materials and polymeric gels by means of DSC measurement: thermoporometry", Polymer, 41(15), 5885-5893.
  21. Jonsson, A.-S. and Jonsson, B. (1991), "The influence of nonionic and ionic surfactants on hydrophobic and hydrophilic ultrafiltration membranes", J. Membrane Sci., 56(1), 49-76. https://doi.org/10.1016/0376-7388(91)85015-W
  22. Kang, G. Cao, Y. Zhao, H. and Yuan, Q. (2008), "Preparation and characterization of crosslinked poly(ethylene glycol) diacrylate membranes with excellent antifouling and solvent-resistant properties", J. Membrane Sci., 318(1-2), 227-232. https://doi.org/10.1016/j.memsci.2008.02.045
  23. Kavitskaya, A.A. (2005), "Separation characteristics of charged ultrafiltration membranes modified with the anionic surfactant", Desalination, 184(1-3), 409-414. https://doi.org/10.1016/j.desal.2005.02.058
  24. Liikanen, R. Yli-Kuivila, J. and Laukkanen, R. (2002), "Efficiency of various chemical cleanings for nanofiltration membranes fouled by conventionally treated surface water", J. Membrane Sci., 195(2), 265-276. https://doi.org/10.1016/S0376-7388(01)00569-5
  25. Ma, X. Su, Y. Sun, Q. Wang, Y. and Jiang, Z. (2007), "Enhancing the antifouling property of polyethersulfone ultrafiltration membranes through surface adsorption-crosslinking of poly(vinyl alcohol)", J. Membrane Sci., 300(1-2), 71-78. https://doi.org/10.1016/j.memsci.2007.05.008
  26. Maartens, A. Jacobs, E.P. and Swart, P. (2002), "UF of pulp and paper effluent: membrane fouling-prevention and cleaning", J. Membrane Sci., 209(1), 81-92. https://doi.org/10.1016/S0376-7388(02)00266-1
  27. Mietton-peuchot, M. and Ranisio, O. (1996), "Study of behaviour of membranes on the presence of anionic or nonionic surfactants", the 7th world filtration congress in Budapest.
  28. Morel, G. Ouazzani, N. Graciaa, A. and Lachaise, J. (1997), "Surfactant modified ultrafiltration for nitrate ion removal", J. Membrane Sci., 134(1), 47-57. https://doi.org/10.1016/S0376-7388(97)00093-8
  29. Nystrom, M. and Zhu, H. (1997), "Characterisation of cleaning results using combined flux and streaming potential methods", J. Membrane Sci., 131(1-2), 195-205. https://doi.org/10.1016/S0376-7388(97)00053-7
  30. Pal, S. Ghatak, S.K. De, S. and DasGupta, S. (2008), "Characterization of $CO_{2}$ plasma treated polymeric membranes and quantification of flux enhancement", J. Membrane Sci., 323(1), 1-10. https://doi.org/10.1016/j.memsci.2008.05.058
  31. Pouchert, C.J. (1981), The Aldrich Library of Infrared Spectra, Aldrich Chemical Company Inc..
  32. Reddy, A.V.R. Mohan, D.J. Bhattacharya, A. Shah, V.J. and Ghosh, P.K. (2003), "Surface modification of ultrafiltration membranes by preadsorption of a negatively charged polymer I. Permeation of water soluble polymers and inorganic salt solutions and fouling resistance properties", J. Membrane Sci., 214(2), 211-221. https://doi.org/10.1016/S0376-7388(02)00547-1
  33. Rouaix, S. Causserand, C. and Aimar, P. (2006), "Experimental study of the effects of hypochlorite on polysulfone membrane properties", J. Membrane Sci., 277(1-2), 137-147. https://doi.org/10.1016/j.memsci.2005.10.040
  34. Schuster, P. Zundel, G. and Sandorfy, C. (1976), The Hydrogen Bond. I. Theory, North-Holland, Amsterdam.
  35. Su, Y. Li, C. Zhao, W. Shi, Q. Wang, H. Jiang, Z. and Zhu, S. (2008), "Modification of polyethersulfone ultrafiltration membranes with phosphorylcholine copolymer can remarkably improve the antifouling and permeation properties", J. Membrane Sci., 322(1), 171-177. https://doi.org/10.1016/j.memsci.2008.05.047
  36. The Dow Chemical Company (2011), $FILMTEC^{TM}$ Reverse Osmosis Membranes Technical Manual, http://www.filmtec.com.
  37. Wilbert, M.C. Pellegrino, J. and Zydney, A. (1998), "Bench-scale testing of surfactant modified reverse osmosis/ nanofiltration membranes, Desalination, 115(1), 15-32. https://doi.org/10.1016/S0011-9164(98)00022-8
  38. Xu, J. Xu, Z.-L. (2002), "Poly(vinyl chloride) (PVC) hollowfiber ultrafiltration membranes prepared from PVC/ additives/solvent", J. Membrane Sci., 208(1-2), 203-212. https://doi.org/10.1016/S0376-7388(02)00261-2
  39. Yoon, S.-D. Chough, S.-H. and Park, H.-R. (2006), "Properties of starch-based blend films using citric acid as additive II", J. Appl. Polymer Sci., 100(3), 2554-2560. https://doi.org/10.1002/app.23783
  40. Yu, H. Cao, Y. Kang, G. Liu, J. Li, M. and Yuan, Q. (2009), "Enhancing antifouling property of polysulfone ultrafiltration membrane by grafting zwitterionic copolymer via UV-initiated polymerization", J. Membrane Sci., 342(1-2), 6-13. https://doi.org/10.1016/j.memsci.2009.05.041
  41. Zhao, Y. and Yuan, Q. (2006), "Effect of membrane pretreatment on performance of solvent resistant nanofiltration membranes in methanol solutions", J. Membrane Sci., 280(1-2), 195-201. https://doi.org/10.1016/j.memsci.2006.01.026
  42. Zhu, H. and Nystrom, M. (1998), "Cleaning results characterized by flux, streaming potential and FTIR measurements", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 138, 309-321. https://doi.org/10.1016/S0927-7757(97)00072-1

피인용 문헌

  1. Racemic and enantiomeric effect of tartaric acid on the hydrophilicity of polysulfone membrane vol.7, pp.3, 2016, https://doi.org/10.12989/mwt.2016.7.3.257
  2. Preparation, characterization and performance enhancement of polysulfone ultrafiltration membrane using PBI as hydrophilic modifier vol.475, 2015, https://doi.org/10.1016/j.memsci.2014.10.010
  3. Enantiomeric and racemic effect of tartaric acid on polysulfone membrane during crystal violet dye removal by MEUF process vol.10, 2016, https://doi.org/10.1016/j.jwpe.2016.02.009
  4. Development of carboxylated TiO 2 incorporated thin film nanocomposite hollow fiber membranes for flue gas dehydration vol.514, 2016, https://doi.org/10.1016/j.memsci.2016.05.017
  5. Acetyl- d -glucopyranoside functionalized carbon nanotubes for the development of high performance ultrafiltration membranes vol.191, 2018, https://doi.org/10.1016/j.seppur.2017.09.018
  6. Preparation of poly(vinylidene fluoride) membranes with graphene oxide addition for natural organic matter removal vol.473, 2015, https://doi.org/10.1016/j.memsci.2014.09.018
  7. Synthesis and characterization of thin film nanocomposite membranes incorporated with surface functionalized Silicon nanoparticles for improved water vapor permeation performance vol.308, 2017, https://doi.org/10.1016/j.cej.2016.09.033
  8. Tailored PVDF nanocomposite membranes using exfoliated MoS2 nanosheets for improved permeation and antifouling performance vol.41, pp.23, 2017, https://doi.org/10.1039/C7NJ03193A
  9. Permeability of pH-sensitive membranes grafted by Fenton-type reaction: An experimental and modeling study vol.6, pp.5, 2015, https://doi.org/10.12989/mwt.2015.6.5.411
  10. Evaluation of Antimicrobial Efficiency of New Polymers Comprised by Covalently Attached and/or Electrostatically Bound Bacteriostatic Species, Based on Quaternary Ammonium Compounds vol.20, pp.12, 2015, https://doi.org/10.3390/molecules201219768
  11. Potential and performance of a polydopamine-coated multiwalled carbon nanotube/polysulfone nanocomposite membrane for ultrafiltration application vol.34, 2016, https://doi.org/10.1016/j.jiec.2015.11.025
  12. Understanding and tuning of polymer surfaces for dialysis applications vol.28, pp.2, 2017, https://doi.org/10.1002/pat.3872
  13. Green materials science and engineering reduces biofouling: approaches for medical and membrane-based technologies vol.6, 2015, https://doi.org/10.3389/fmicb.2015.00196
  14. Preparation and properties of nanocomposite polysulfone/multi-walled carbon nanotubes membranes for desalination vol.367, 2015, https://doi.org/10.1016/j.desal.2015.04.001
  15. Mixed matrix membranes: Two step process modified with electrospun (carboxy methylcellulose sodium salt/sepiolite) fibers for nanofiltration vol.50, 2017, https://doi.org/10.1016/j.jiec.2017.02.011
  16. Two indigenous high sheared membrane modules' performance expatiation for the ultrafiltration of polyethylene glycol vol.4, pp.13, 2014, https://doi.org/10.1039/c3ra44117b
  17. Comparative electrochemical study of sulphonated polysulphone binded graphene oxide supercapacitor in two electrolytes vol.18, 2016, https://doi.org/10.5714/CL.2016.18.043
  18. Membranas de polisulfona/argila: influência de diferentes argilas na propriedade de barreira vol.23, pp.1, 2018, https://doi.org/10.1590/s1517-707620170001.0317
  19. Nanocomposite hollow fiber membranes with recyclable β-cyclodextrin encapsulated magnetite nanoparticles for water vapor separation pp.2050-7496, 2018, https://doi.org/10.1039/C8TA09413F
  20. Investigations of Alkaline and Enzymatic Membrane Cleaning of Ultrafiltration Membranes Fouled by Thermomechanical Pulping Process Water vol.8, pp.4, 2018, https://doi.org/10.3390/membranes8040091
  21. Effect of hydrophilic poly(ethylene glycol) methyl ether additive on the structure, morphology, and performance of polysulfone flat sheet ultrafiltration membrane pp.00218995, 2019, https://doi.org/10.1002/app.47163
  22. Preparation of High-Flux Ultrafiltration Polyphenylsulfone Membranes vol.58, pp.9, 2018, https://doi.org/10.1134/S0965544118090050
  23. Characterization of Irreversible Fouling after Ultrafiltration of Thermomechanical Pulp Mill Process Water vol.38, pp.3, 2018, https://doi.org/10.1080/02773813.2018.1454962
  24. Fabrication and characterization of polysulfone ultrafiltration membrane using polyethylene glycol and tartaric acid: morphology and performance in protein separation vol.8, pp.6, 2012, https://doi.org/10.12989/mwt.2017.8.6.591
  25. Behaviour of polysulfone ultrafiltration membrane for dyes removal vol.77, pp.8, 2012, https://doi.org/10.2166/wst.2018.124
  26. Exploiting Synergetic Effects of Graphene Oxide and a Silver-Based Metal-Organic Framework To Enhance Antifouling and Anti-Biofouling Properties of Thin-Film Nanocomposite Membranes vol.10, pp.49, 2012, https://doi.org/10.1021/acsami.8b12714
  27. Mechanism of bacterial adhesion on ultrafiltration membrane modified by natural antimicrobial polymers (chitosan) and combination with activated carbon (PAC) vol.35, pp.3, 2012, https://doi.org/10.1515/revce-2017-0006
  28. Effect of Glass Fibers Thermal Treatment on the Mechanical and Thermal Behavior of Polysulfone Based Composites vol.12, pp.4, 2012, https://doi.org/10.3390/polym12040902
  29. Toward Sustainable Tackling of Biofouling Implications and Improved Performance of TFC FO Membranes Modified by Ag-MOF Nanorods vol.12, pp.34, 2012, https://doi.org/10.1021/acsami.0c13029
  30. Toward Sustainable Tackling of Biofouling Implications and Improved Performance of TFC FO Membranes Modified by Ag-MOF Nanorods vol.12, pp.34, 2012, https://doi.org/10.1021/acsami.0c13029
  31. Sulfonic-functionalized graphene oxide reinforced polyethersulfone nanocomposites with enhanced dielectric permittivity and EMI shielding effectiveness vol.57, pp.11, 2012, https://doi.org/10.1080/10601325.2020.1782228
  32. Fabrication of mixed matrix membrane containing chlorophyll extracted from spinach for humic acid removal vol.46, pp.p5, 2012, https://doi.org/10.1016/j.matpr.2021.03.200
  33. Green Synthesis of Silver Nanoparticles as an Effective Antibiofouling Material for Polyvinylidene Fluoride (PVDF) Ultrafiltration Membrane vol.13, pp.21, 2012, https://doi.org/10.3390/polym13213683
  34. Effective strategy for UV-mediated grafting of biocidal Ag-MOFs on polymeric membranes aimed at enhanced water ultrafiltration vol.426, pp.None, 2012, https://doi.org/10.1016/j.cej.2021.130704
  35. Removal of Heavy Metals from Wastewater Using Novel Polydopamine-Modified CNTs-Based Composite Membranes vol.9, pp.12, 2012, https://doi.org/10.3390/pr9122120
  36. Functionalized polyamide membranes yield suppression of biofilm and planktonic bacteria while retaining flux and selectivity vol.282, pp.no.pa, 2022, https://doi.org/10.1016/j.seppur.2021.119981