DOI QR코드

DOI QR Code

Developments and future potentials of anaerobic membrane bioreactors (AnMBRs)

  • Visvanathan, Chettiyappan (Environmental Engineering and Management Program, School of Environment, Resources and Development, Asian Institute of Technology) ;
  • Abeynayaka, Amila (Environmental Engineering and Management Program, School of Environment, Resources and Development, Asian Institute of Technology)
  • Received : 2011.04.13
  • Accepted : 2011.09.15
  • Published : 2012.01.25

Abstract

The coupling of anaerobic biological process and membrane separation could provide excellent suspended solids removal and better biomass retention for wastewater treatment. This coupling improves the biological treatment process while allowing for the recovery of energy through biogas. This review gives a basic description of the anaerobic wastewater treatment process, summarizes the state of the art of anaerobic membrane bioreactors (AnMBRs), and describes the current research trends and needs for the development of AnMBRs. The research interest on AnMBR has grown over the conventional anaerobic processes such as upflow anaerobic sludge blanket (UASB). Studies on AnMBRs have developed different reactor configurations to enhance performances. The AnMBR performances have achieved comparable status to other high rate anaerobic reactors. AnMBR is highly suitable for application with thermophilic anaerobic process to enhance performances. Studies indicate that the applications of AnMBR are not only limited to the high strength industrial wastewater treatment, but also for the municipal wastewater treatment. In recent years, there is a significant progress in the membrane fouling studies, which is a major concern in AnMBR application.

Keywords

References

  1. Abeynayaka, A. and Visvanathan, C. (2011a), "Mesophilic and thermophilic aerobic batch biodegradation, utilization of carbon and nitrogen sources in high-strength wastewater", Bioresource Technol., 102(3), 2358-2366. https://doi.org/10.1016/j.biortech.2010.10.096
  2. Abeynayaka, A. and Visvanathan, C. (2011b), "Performance comparison of mesophilic and thermophilic aerobic side-stream membrane bioreactors treating high strength wastewater", Bioresource Technol., 102(9), 5345-5352. https://doi.org/10.1016/j.biortech.2010.11.079
  3. Adamse, A.D. (1980), "New isolation of clostridium aceticum (wieringa). Antonie Van Leeuwenhoek", Int. J. General Molec. Microbiol., 46(6), 523-531.
  4. Akram, A. and Stuckey, D.C. (2008a), "Flux and performance improvement in a submerged anaerobic membrane bioreactor (SAMBR) using powdered activated carbon (PAC)", Process Biochem., 43(1), 93-102. https://doi.org/10.1016/j.procbio.2007.10.020
  5. Akram, A. and Stuckey, D.C. (2008b), "Biomass acclimatisation and adaptation during start-up of a submerged anaerobic membrane bioreactor (SAMBR)", Environ. Technol., 29(10), 1053-1065. https://doi.org/10.1080/09593330802175856
  6. Anderson, G.K., Saw, C.B. and Fernandes, M.I.A.P. (1986), "Applications of porous membranes for biomass retention in biological wastewater treatment process", Process Biochem., 21(6), 174-182.
  7. Bailey, A.D., Hansford, G.S. and Dold, P.L. (1994), "The enchancement of upflow anaerobic sludge bed reactor performance using crossflow microfiltration", Water Res., 28(2), 291-295. https://doi.org/10.1016/0043-1354(94)90266-6
  8. Batstone, D.J., Keller, J., Newell, R.B. and Newland, M. (2000), "Modelling anaerobic degradation of complex wastewater. I: model development", Bioresource Technol., 75(1), 67-74. https://doi.org/10.1016/S0960-8524(00)00018-3
  9. Bouallagui, H., Haouari, O., Touhami, Y., Cheikh, R.B., Marouani, L. and Hamdi, M. (2004), "Effect of temperature on the performance of an anaerobic tubular reactor treating fruit and vegetable waste", Process Biochem., 39, 2143-2148. https://doi.org/10.1016/j.procbio.2003.11.022
  10. Borja, R., Banks, C.J. and Sinchez, E.(1996), "Anaerobic treatment of palm oil mill effluent in a two-stage upflow anaerobic sludge blanket (UASB) system", J. Biotechnol., 45(2), I25-135. https://doi.org/10.1016/0168-1656(95)00154-9
  11. Borja, R., Martiqb, A., Banks, C.J., Alonsob, V. and Chicab, A. (1995), " A kinetic study of anaerobic digestion of olive mill wastewater at mesophilic and thermophilic Temperatures", Environ. Pollution, 88(1), 13-18. https://doi.org/10.1016/0269-7491(95)91043-K
  12. Bravo, A.D., Filippi, G.R. and Chamy, R. (2009), "Anaerobic treatment of low strength wastewater with a high fraction of particulate matter in an unconventional two phase ASBRs system", Biochem. Eng. J., 43(3), 297-302. https://doi.org/10.1016/j.bej.2008.10.011
  13. Brockmann, M. and Seyfried, C.F. (1996), "Sludge activity and cross flow microfiltration-a non beneficial relationship", Water Sci. Technol., 34(9), 205-213.
  14. Calderon, K., Rodelas, B., Cabirol, N., Gonzalez-Lopez, J. and Noyola, A. (2011), "Analysis of microbial communities developed on the fouling layers of a membrane-coupled anaerobic bioreactor applied to wastewater treatment", Bioresource Technol., 102(7), 4618-4627. https://doi.org/10.1016/j.biortech.2011.01.007
  15. Chang, I.S. and Lee, C.H. (1998), "Membrane filtration characteristics in membrane-coupled activated sludge system - the effect of physiological states of activated sludge on membrane fouling", Desalination, 120(3), 221-233. https://doi.org/10.1016/S0011-9164(98)00220-3
  16. Chang, I.S., Clech, P.L., Jefferson, B. and Judd, S. (2002), "Membrane fouling in membrane bioreactors for wastewater treatment", J. Environ. Eng., 128(11), 1018-1029. https://doi.org/10.1061/(ASCE)0733-9372(2002)128:11(1018)
  17. Chen, Y., Cheng, J.J. and Creamer, K.S. (2008), "Inhibition of anaerobic digestion process: A review", Bioresource Technol., 99(10), 4044-4064. https://doi.org/10.1016/j.biortech.2007.01.057
  18. Cheong, D. and Hansen, C.L. (2008), "Effect of feeding strategy on the stability of anaerobic sequencing batch reactor responses to organic loading conditions", Bioresource Technol., 99(11), 5058-5068. https://doi.org/10.1016/j.biortech.2007.08.084
  19. Choo, K.H. and Lee, C.H. (1996), "Membrane fouling mechanisms in the membrane-coupled anaerobic bioreactor", Water Res., 30(8), 1771-1780. https://doi.org/10.1016/0043-1354(96)00053-X
  20. de Gioannis, G., Diaz, L.F., Muntoni, A. and Pisanu, A. (2008), "Two-phase anaerobic digestion within a solid waste/wastewater integrated management system", Waste Management, 28(10), 1801-1808. https://doi.org/10.1016/j.wasman.2007.11.005
  21. Fakhru'l-Razi, A. (1994), " Ultrafiltration membrane separation for anaerobic wastewater treatment", Water Sci. Technol., 30(12), 321-327.
  22. Fang, H.H.P., Chui, H.K., Li, Y.Y. and Chen, T. (1994a), "Microbial structure and activity of UASB granules treating different wastewaters", Water Sci. Technol., 30(12), 87-96.
  23. Fang, H.H.P., Chui, H.K., Li, Y.Y. and Chen, T.(1994b), "Performance and granule characteristics of UASB process treating wastewater with hydrolyzed proteins", Water Sci. Technol., 30(8), 55-63.
  24. Ganesh, R., Rajinikanth, R., Thanikal, J.V., Ramanujam, R.A. and Torrijos, M. (2010), "Anaerobic treatment of winery wastewater in fixed bed reactor", Bioprocess Biosystem Eng., 33, 619-628. https://doi.org/10.1007/s00449-009-0387-9
  25. Gao, D., Zhang, T., Tang, C.Y.Y., Wu, W., Wong, C., Lee, Y.H., et al. (2010), "Membrane fouling in an anaerobic membrane bioreactor: Differences in relative abundance of bacterial species in the membrane foulant layer and in suspension", J. Membrane Sci., 364(1-2), 331-338. https://doi.org/10.1016/j.memsci.2010.08.031
  26. Ghaniyari-Benis, S., Borja, R., Monemian, A.S. and Goodarzi, V. (2009), "Anaerobic Treatment of Synthetic medium strength wastewater using a multistage biofilm reactor", Bioresource Technol., 100, 1740-1745. https://doi.org/10.1016/j.biortech.2008.09.046
  27. Harada, H., Momonoi, K., Yamazaki, S. and Takizawa, S. (1994), "Application of anaerobic UF membrane reactor for treatment of a wastewater containing high strength particulate organics", Water Res., 30(12), 307-319. https://doi.org/10.1029/93WR02675
  28. He, Y., Xu, P., Li, C. and Zhang, B. (2005), "High concentration food wastewater treatment by an anaerobic membrane bioreactor", Water Res., 39(17), 4110-4118. https://doi.org/10.1016/j.watres.2005.07.030
  29. Henze, M. and Harremoes, P. (1983), "Anaerobic treatment of wastewater in fixed film reactors - a literature review", Water Sci. Technol., 15(8-9), 1-101.
  30. Ho, J. and Sung, S.(2009), "Anaerobic membrane bioreactor treatment of synthetic municipal wastewater at ambient temperature", Water Environ. Res., 81(9), 922-928. https://doi.org/10.2175/106143009X407339
  31. Huang, Z., Ong, S.L. and Ng, H.Y. (2011), "Submerged anaerobic membrane bioreactor for low-strength wastewater treatment: Effect of HRT and SRT on treatment performance and membrane fouling", Water Res., 45(2), 705-713. https://doi.org/10.1016/j.watres.2010.08.035
  32. Jeison, D. and van Lier, J.B. (2007), "Feasibility of thermophilic anaerobic submerged membrane bioreactors (AnSMBR) for wastewater treatment", Desalination, 231(1-3), 227-235.
  33. Jeison, D. and van Lier, J.B. (2006), "Cake layer formation in anaerobic submerged membrane bioreactor (AnSMBR) for wastewater treatment", J. Membrane Sci., 284(1-2), 227-236. https://doi.org/10.1016/j.memsci.2006.07.035
  34. Jeison, D. and van Lier, J.B. (2008), "Anaerobic wastewater treatment and membrane filtration: a one night strand or a sustainable development", Water Sci. Technol., 57(2), 527-532. https://doi.org/10.2166/wst.2008.096
  35. Jeison, D., Diaz, I. and van Lier, J.B. (2008), "Anaerobic membrane bioreactors: are membranes really necessary", Electronic J. Biotechnol., 11(4).
  36. Jeison, D., Plugge, C.M., Pereira, A. and Lier, J.B.V. (2009a), "Effects of the acidogenic biomass on the performance of an anaerobic membrane bioreactor for wastewater treatment", Bioresource Technol., 100(6), 1951-1956. https://doi.org/10.1016/j.biortech.2008.10.028
  37. Jeison, D., Kremer, B. and van Lier, J.B. (2009b), "Application of membrane enhanced biomass retention to the anaerobic treatment of acidified wastewater under extreme saline condition", Sep. Purif. Technol., 64(2), 198-205.
  38. Judd, S. (2008), The status of membrane bioreactor technology. Trends in Biotechnology, 26(2), 109-116. https://doi.org/10.1016/j.tibtech.2007.11.005
  39. Kang, J.I., Yoon, S.H. and Lee, C.H. (2002), "Comparison of the filtration characteristics of organic and inorganic membranes in a membrane-coupled anaerobic bioreactor", Water Res., 36(7), 1803-1813. https://doi.org/10.1016/S0043-1354(01)00388-8
  40. Kayhanian, M. (1994), "Performance of a high-solids anaerobic digestion process under various ammonia concentrations", J. Chem. Technol. Biotechnol., 59(4), 349-352. https://doi.org/10.1002/jctb.280590406
  41. Khanal, S.K. (2008), "Anaerobic biotechnology for bioenergy production : principles and applications. Jhon Willey & Sons, USA. ISBN: 978-0-8138-2346-1.
  42. Kim, J., Kim, K., Ye, H., Lee, E., Shin, C., McCarty, P. L., et al. (2011), "Anaerobic fluidized bed membrane bioreactor for wastewater treatment", Environ. Sci. Technol., 45(2), 576-581. https://doi.org/10.1021/es1027103
  43. Le-Clech, P., Chen, V. and Fane, T.A.G. (2006), "Fouling in membrane bioreactors used in wastewater treatment", J. Membrane Sci., 284(1-2), 17-53. https://doi.org/10.1016/j.memsci.2006.08.019
  44. Lee, S.M., Jung, J.Y. and Chung, Y.C. (2001), "Noval method for enchnaning permeate flux of submerged membrane system in two phase anaerobic reactor", Water Res., 35(2), 471-477. https://doi.org/10.1016/S0043-1354(00)00255-4
  45. Lew, B., Tarre, S., Beliavski, M., Dosoretz, C. and Green, M. (2009), "Anaerobic membrane bioreactor (AnMBR) for domestic wastewater treatment", Desalination, 243(1-3), 251-257. https://doi.org/10.1016/j.desal.2008.04.027
  46. Liao, B.Q., Xie, K., Lin, H.J. and Bertoldo, D. (2010), "Treatment of kraft evaporator condensate using a thermophilic submerged anaerobic membrane bioreactor", Water Sci. Technol., 61(9), 2177-2183. https://doi.org/10.2166/wst.2010.123
  47. Liao, B., Kraemer, J.T. and Bagley, M.D. (2006), "Anaerobic membrane bioreactors: application and research directions", Crit. Rev. Environ. Sci. Technol., 36, 489-530. https://doi.org/10.1080/10643380600678146
  48. Lin, H.J., Gao, W.J., Leung, K.T., Liao, B.Q. and Lin, H.J. (2011a), "Characteristics of different fractions of microbial flocs and their role in membrane fouling", Water Sci. Technol., 63(2), 262-269. https://doi.org/10.2166/wst.2011.047
  49. Lin, H., Liao, B. -., Chen, J., Gao, W., Wang, L., Wang, F., et al. (2011b), "New insights into membrane fouling in a submerged anaerobic membrane bioreactor based on characterization of cake sludge and bulk sludge", Bioresource Technol., 102(3), 2373-2379. https://doi.org/10.1016/j.biortech.2010.10.103
  50. Lin, H.J., Xie, K., Mahendran, B., Bagley, D.M., Leung, K.T., Liss, S.N., et al. (2010), "Factors affecting sludge cake formation in a submerged anaerobic membrane bioreactor", J. Membrane Sci., 361(1-2), 126-134. https://doi.org/10.1016/j.memsci.2010.05.062
  51. McCarty, P.L. and Smith, D.P. (1986), "Anaerobic wastewater treatment", Environ. Sci. Technol., 20, 1200-1226. https://doi.org/10.1021/es00154a002
  52. Melin, T., Jefferson, B., Bixio, D., Thoeye, C., De Wilde, W., De Koning, J., et al. (2006), "Membrane bioreactor technology for wastewater treatment and reuse", Desalination, 187(1-3), 271-282. https://doi.org/10.1016/j.desal.2005.04.086
  53. Najafpour, G.D., Zinatizadeh, A.A.L., Mohamed, A.R., Hasnain Isa, M. and Nasrollahzadeh, H. (2006), "Highrate anaerobic digestion of palm oil mill effluent in an upflow anaerobic sludge-fixed film bioreactor", Process Biochem., 41(2), 370-379. https://doi.org/10.1016/j.procbio.2005.06.031
  54. Parawira, W., Murto, M., Read, J.S. and Mattiasson, B. (2007), "A Study of Two-Stage Anaerobic Digestion of Solid Potato Waste using Reactors under Mesophilic and Thermophilic Conditions", Environ. Technol., 28(11), 1205-1216. https://doi.org/10.1080/09593332808618881
  55. Pavlostathis, S.G. and Giraldo-Gomez, E. (1991), "Kinetics of anaerobic treatment: A critical review", Crit. Rev. Environ. Contr., 21 (5-6), 411-490. https://doi.org/10.1080/10643389109388424
  56. Saddoud, A., Hassairi, I. and Sayadi, S. (2007), "Anaerobic membrane reactor with pahse separation for the treatment of cheese whey", Bioresource Technol., 98(11), 2102-2108. https://doi.org/10.1016/j.biortech.2006.08.013
  57. Scopus (2011). Scopus key-word searches and abstracts. Retrieved from: www.scopus.com February 2011.
  58. Shizas, I. and Bagley, D.M. (2004), "Experimental determination of energy content of unknown organics in municipal wastewater streams", J. Energy Eng., 130(45).
  59. Speece, R.E., Boonyakitsombut, S., Kim, M., Azbar, N. and Ursillo, P. (2006), "Overview of anaerobic treatment: thermophilic and propionate implications", Water Environ. Res., 78(5), 460-473. https://doi.org/10.2175/106143006X95492
  60. Stuckey, D.C. and Trzcinski, A.P. (2009), "Continuous treatment of the organic fraction of municipal solid waste in an anaerobic two stage membrane process with liquid recycle", Water Res., 43(9), 2449-2462. https://doi.org/10.1016/j.watres.2009.03.030
  61. Sutton, P.M., Melcer, H., Schraa, O.J. and Togna, A.P. (2011), "Treating municipal wastewater with the goal of resource recovery", Water Sci. Technol., 63(1), 25-31. https://doi.org/10.2166/wst.2011.004
  62. Teoh, M.M.,Wang, K.Y., Bonyadi, S., Yang, Q. and Chung, T. (2011), "Emerging membrane technologies developed in NUS for water reuse and desalination applications: membrane distillation and forward osmosis", Membrane Water Treatment, 2(1), 2011
  63. UNFCCC (2009). Copenhagen Accord. Retrieved from: www.unfccc.int March 2010.
  64. van Lier, J.B. (1996), "Limitations of thermophilic anaerobic wastewater treatment and the concequences for process design", Antonie van Leeuwenhoek, 69(1), 1-14. https://doi.org/10.1007/BF00641606
  65. Vallero, M.V.G., Lettinga, G. and Lens, P.N.L. (2005), "High rate sulfate reduction in a submerged anaerobic membrane bioreactor (SAMBaR) at high salinity", J. Membrane Sci., 253(1-2), 217-232. https://doi.org/10.1016/j.memsci.2004.12.032
  66. Visvanathan, C., Ben Aim, R. and Parameshwaran, K. (2000), "Membrane separation bioreactors for wastewater treatment", Crit. Rev. Environ. Sci. Technol., 30(1), 1-48. https://doi.org/10.1080/10643380091184165
  67. Wang, Z., Ye, S., Wu, Z. and Tang, S. (2010), Application of anaerobic membrane bioreactor to the treatment of low-strength municipal wastewater. Paper presented at the 2010 4th International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2010. Article number 5518308.
  68. Weigel, P.H. and Oka, J.A. (1981), "Temperature dependence of endocytosis mediated by the asialoglycoprotein receptor in isolated rat hepatocytes. evidence for two potentially rate-limiting steps", J. Biological Chem., 256(6), 2615-2617.
  69. Wijekoon, K.C., Visvanathan, C. and Abeynayaka, A. (2011), "Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor", Bioresource Technol., 102(9), 5353-5360. https://doi.org/10.1016/j.biortech.2010.12.081
  70. Wu, J., Le-Clech, P., Stuetz, R.M., Fane, A.G. and Chen, V. (2008). "Novel filtration mode for fouling limitation in membrane bioreactors", Water Res., 42(14), 3677-3684. https://doi.org/10.1016/j.watres.2008.06.004
  71. WPCF, Water pollution control federation (1987), Manual of practice 16, Anaerobic sludge digestion, 2nd edition. Water Pollution Control Federation, Aexandra, VA, USA.
  72. Yejian, Z., Li, Y., Xiangli, Q., Lina, C., Xiangjun, N., Zhijian, M. and Zhenjia, Z. (2008), "Integration of biological method and membrane technology in treating palm oil mill effluent" J. Environ. Sci., 20(5), 558-564. https://doi.org/10.1016/S1001-0742(08)62094-X
  73. Yeoh, B.G. (1997), "Two-phase anaerobic treatment of cane-molasses alcohol stillage", Water Sci. Technol., 36(6), 441-448. https://doi.org/10.1016/S0273-1223(97)00553-2
  74. Yilmaz, T., Yuceer, A. and Basibuyuk, M. (2008), "A comparison of the performance of mesophilic and thermophilic anaerobic filters treating papermill wastewater", Bioresource Technol., 99(1), 156-163. https://doi.org/10.1016/j.biortech.2006.11.038
  75. Zhang, X., Wang, Z., Wu, Z., Lu, F., Tong, J. and Zang, L. (2010), "Formation of dynamic membrane in an anaerobic membrane bioreactor for municipal wastewater treatment", Chem. Eng. J., 165(1), 175-183. https://doi.org/10.1016/j.cej.2010.09.013
  76. Zinatizadeh, A.A.L., Mohamed, A.R., Najafpour, G.D., Isa, M.H. and Nasrollahzadeh, H. (2006), "Kinetic evaluation of palm oil mill effluent digestion in a high rate up-flow anaerobic sludge fixed film bioreactor", Process Biochem., 41(5), 1038-1046. https://doi.org/10.1016/j.procbio.2005.11.011

Cited by

  1. Removal of polycyclic musks by anaerobic membrane bioreactor: Biodegradation, biosorption, and enantioselectivity vol.117, 2014, https://doi.org/10.1016/j.chemosphere.2014.10.004
  2. Performances of a submerged anaerobic membrane bioreactor (AnMBR) for latex serum treatment 2015, https://doi.org/10.1080/19443994.2015.1110727
  3. Advances in biological systems for the treatment of high-strength wastewater vol.10, 2016, https://doi.org/10.1016/j.jwpe.2016.02.008
  4. Direct contact membrane distillation for anaerobic effluent treatment vol.475, 2015, https://doi.org/10.1016/j.memsci.2014.10.021
  5. Role of membranes in bioelectrochemical systems vol.6, pp.1, 2015, https://doi.org/10.12989/mwt.2015.6.1.053
  6. Shifts in microbial community structure and diversity in a MBR combined with worm reactors treating synthetic wastewater vol.54, 2017, https://doi.org/10.1016/j.jes.2016.03.009
  7. Performance improvement in a two-stage thermophilic anaerobic membrane bioreactor using PVA-gel as biocarrier vol.53, pp.10, 2015, https://doi.org/10.1080/19443994.2014.931531
  8. Development and testing of a fully gravitational submerged anaerobic membrane bioreactor for wastewater treatment vol.36, pp.18, 2015, https://doi.org/10.1080/09593330.2015.1026847
  9. Membrane processes and renewable energies vol.43, 2015, https://doi.org/10.1016/j.rser.2014.11.091
  10. Prediction of membrane fouling using artificial neural networks for wastewater treated by membrane bioreactor technologies: bottlenecks and possibilities vol.24, pp.29, 2017, https://doi.org/10.1007/s11356-017-0046-7
  11. Effects of sulphur on the performance of an anaerobic membrane bioreactor: Biological stability, trace organic contaminant removal, and membrane fouling vol.250, 2018, https://doi.org/10.1016/j.biortech.2017.11.021
  12. Anaerobic dynamic membrane bioreactor (AnDMBR) for wastewater treatment: A review vol.247, 2018, https://doi.org/10.1016/j.biortech.2017.09.101
  13. Wastewater treatment in microbial fuel cells – an overview vol.122, 2016, https://doi.org/10.1016/j.jclepro.2016.02.022
  14. Influence of relaxation frequency on membrane fouling control in submerged anaerobic membrane bioreactor (SAnMBR) vol.52, pp.22-24, 2014, https://doi.org/10.1080/19443994.2013.802258
  15. Effect of polyvinyl alcohol hydrogel as a biocarrier on volatile fatty acids production of a two-stage thermophilic anaerobic membrane bioreactor vol.168, 2014, https://doi.org/10.1016/j.biortech.2014.04.023
  16. Evaluation of a novel physical cleaning strategy based on HF membrane rotation during the backwashing/relaxation phases for anaerobic submerged MBR vol.526, 2017, https://doi.org/10.1016/j.memsci.2016.12.042
  17. Development of a high-rate submerged anaerobic membrane bioreactor vol.39, pp.5, 2018, https://doi.org/10.1080/09593330.2017.1309076
  18. Monitoring the microbial community shift throughout the shock changes of hydraulic retention time in an anaerobic moving bed membrane bioreactor vol.202, 2016, https://doi.org/10.1016/j.biortech.2015.11.085
  19. Performance of a pilot split-type anaerobic membrane bioreactor (AnMBR) treating antibiotics solvent wastewater at low temperatures vol.325, 2017, https://doi.org/10.1016/j.cej.2017.05.086
  20. A review of moving-bed biofilm reactor technology for palm oil mill effluent treatment vol.171, 2018, https://doi.org/10.1016/j.jclepro.2017.10.100
  21. Valorization of a Pulp Industry By-Product through the Production of Short-Chain Organic Acids vol.3, pp.2, 2017, https://doi.org/10.3390/fermentation3020020
  22. An aerated and fluidized bed membrane bioreactor for effective wastewater treatment with low membrane fouling vol.2, pp.6, 2016, https://doi.org/10.1039/C6EW00203J
  23. Membrane bioreactors’ potential for ethanol and biogas production: a review vol.34, pp.13-14, 2013, https://doi.org/10.1080/09593330.2013.813559
  24. Meat processing waste as a potential feedstock for biochemicals and biofuels – A review of possible conversion technologies vol.142, 2017, https://doi.org/10.1016/j.jclepro.2016.11.141
  25. A review of anaerobic membrane bioreactors for municipal wastewater treatment: Integration options, limitations and expectations vol.118, 2013, https://doi.org/10.1016/j.seppur.2013.06.036
  26. Challenges in biogas production from anaerobic membrane bioreactors vol.98, 2016, https://doi.org/10.1016/j.renene.2016.03.095
  27. Utilizing bioaugmentation to improve performance of a two-phase AnMBR treating sewage sludge pp.1479-487X, 2018, https://doi.org/10.1080/09593330.2018.1533041
  28. Treatment of Palm Oil Mill Effluent Using Membrane Bioreactor: Novel Processes and Their Major Drawbacks vol.10, pp.9, 2018, https://doi.org/10.3390/w10091165
  29. Performance evaluation and substrate removal kinetics in an up-flow anaerobic hybrid membrane bioreactor treating simulated high-strength wastewater pp.1479-487X, 2018, https://doi.org/10.1080/09593330.2018.1498132
  30. Anaerobic Membrane Bioreactor as Highly Efficient and Reliable Technology for Wastewater Treatment—A Review vol.08, pp.02, 2018, https://doi.org/10.4236/aces.2018.82006
  31. A Review of the Role of Critical Parameters in the Design and Operation of Biogas Production Plants vol.9, pp.9, 2012, https://doi.org/10.3390/app9091915
  32. Removal of Phenol from Aqueous Solution Using Internal Microelectrolysis with Fe-Cu: Optimization and Application on Real Coking Wastewater vol.9, pp.4, 2012, https://doi.org/10.3390/pr9040720
  33. Sustainable approach for wastewater treatment using microbial fuel cells and green energy generation - A comprehensive review vol.344, pp.None, 2021, https://doi.org/10.1016/j.molliq.2021.117795
  34. Evaluation of membrane cake fouling mechanism to estimate design parameters of a submerged AnMBR treating high strength industrial wastewater vol.301, pp.None, 2022, https://doi.org/10.1016/j.jenvman.2021.113867