DOI QR코드

DOI QR Code

Application of a fixed Eulerian mesh-based scheme based on the level set function generated by virtual nodes to large-deformation fluid-structure interaction

  • Received : 2012.02.01
  • Accepted : 2012.09.02
  • Published : 2012.09.25

Abstract

We apply a partitioned-solution (iterative-staggered) coupling method based on a fixed Eulerian mesh with the level set function to a large-deformation fluid-structure interaction (FSI) problem where a large-deformable thin structure moves in a high-speed flow field, as an airbag does during deployment. This method combines advanced fluid and structure solvers-specifically, the constrained interpolation profile finite element method (CIP-FEM) for fluid Eulerian mesh and large-deformable structural elements for Lagrangian structural mesh. We express the large-deformable interface as a zero isosurface by the level set function, and introduce virtual nodes with level sets and structural normal velocities to generate the level set function according to the large-deformable interfacial geometry and enforce the kinematic condition at the interface. The virtual nodes are located in the direction normal to the structural mesh. It is confirmed that application of the method to unfolded airbag deployment simulation shows the adequacy of the method.

Keywords

References

  1. Baajiens, F.P.T. (2001), "A fictitious domain/mortar element method for fluid-structure interaction", Int. J. Numer. Meth. Fl., 35(7), 743-761. https://doi.org/10.1002/1097-0363(20010415)35:7<743::AID-FLD109>3.0.CO;2-A
  2. Bungartz, H.J. and Schafer, M. (2007), Fluid-structure interaction, Modeling, Simulation, Optimization, Springer.
  3. Cirak, F. and Radovitzky, R. (2005), "A Lagrangian-Eulerian shell-fluid coupling algorithm based on level sets", Comput. Struct., 83(6-7), 491-498. https://doi.org/10.1016/j.compstruc.2004.03.085
  4. Dvorkin, E., Oñate, E. and Oliver, J. (1988), "On a nonlinear formulation for curved Timoshenko beam elements considering large displacement/rotation increments", Int. J. Numer. Meth. Eng., 26(7), 1597-1613. https://doi.org/10.1002/nme.1620260710
  5. Enright, D., Fedkiw, R., Ferziger, J. and Mitchell, I. (2002), "A hybrid particle level set method for improved interface capturing", J. Comput. Phys., 183(1), 83-116. https://doi.org/10.1006/jcph.2002.7166
  6. Glowinski, R., Pan, T.W. and Periaux, J. (1998), "Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies", Comput. Method. Appl. M., 151(1-2), 181-194. https://doi.org/10.1016/S0045-7825(97)00116-3
  7. Hashimoto, G. and Noguchi, H. (2008), "Gas-liquid interface treatment in underwater explosion problem using Moving Least Squares - Smoothed Particle Hydrodynamics", Interact. Multiscale Mech., 1(2), 251-278. https://doi.org/10.12989/imm.2008.1.2.251
  8. Ishihara, D. and Yoshimura, S. (2005), "A monolithic approach for interaction of incompressible viscous fluid and an elastic body based on fluid pressure Poisson equation", Int. J. Numer. Meth. Eng., 64(2), 167-203. https://doi.org/10.1002/nme.1348
  9. Joosten, M.M., Dettmer, W.G. and Peric, D. (2009), "Analysis of the block Gauss-Seidel solution procedure for a strongly coupled model problem with reference to fluid-structure interaction", Int. J. Numer. Meth. Eng., 78(7), 757-778. https://doi.org/10.1002/nme.2503
  10. Lancaster, P. and Salkauskas, K. (1981), "Surfaces generated by moving least squares methods", Math. Comput., 37(155), 141-158. https://doi.org/10.1090/S0025-5718-1981-0616367-1
  11. Legay, A., Chessa, J. and Belytschko, T. (2006), "An Eulerian-Lagrangian method for fluid-structure interaction based on level sets", Comput. Method. Appl. M., 195(17-18), 2070-2087. https://doi.org/10.1016/j.cma.2005.02.025
  12. Mahangare, M., Trepess, D., Blundell, M.V., Hoffmann, J., Freisinger, M. and Smith, S. (2005), "A simulation approach for the early phase of a driver airbag deployment to investigate OoP scenarios", 5th European MADYMO User Conference, 24-31.
  13. Makihara, T., Shibata, E. and Tanahashi, T. (1999), "Application of the GSMAC-CIP method to incompressible Navier-Stokes equations at high Reynolds numbers", Int. J. Comput. Fluid D., 12(3), 301-314. https://doi.org/10.1080/10618569908940834
  14. Noguchi, H. and Hisada, T. (1993), "Sensitivity analysis in post-buckling problems of shell structures", Comput. Struct., 47(4), 699-710. https://doi.org/10.1016/0045-7949(93)90352-E
  15. von Neumann, J. and Richtmyer, R.D. (1950), "A method for the numerical calculation of hydrodynamic shocks", J. Appl. Phys., 21(3), 232-237. https://doi.org/10.1063/1.1699639
  16. Osher, S. and Fedkiw, R. (2003), Level set method and dynamic implicit surfaces, Springer.
  17. Peskin, C.S. and Mcqueen, D.M. (1989), "A three-dimensional computational method for blood flow in the heart I. immersed elastic fibers in a viscous incompressible fluid", J. Comput. Phys., 81(2), 372-405. https://doi.org/10.1016/0021-9991(89)90213-1
  18. Ruff, C., Eichberger, A. and Jost, T. (2006), "Simulation of an airbag deployment in Out-of-Position situation", 5. LS-DYNA Anwenderforum, 5-16.
  19. Rugonyi, S. and Bathe, K.J. (2001), "On finite element analysis of fluid flows fully coupled with structural interactions", CMES, 2(2), 195-212.
  20. Sawada, T. and Hisada, T. (2005), "Overlaying ALE mesh approach to computation of fluid-structure interactions", Proceedings of the 5th International Conference on Computation of Shell and Spatial Structures, IASS IACM.
  21. Sawada, T., Nakasumi, S., Tezuka, A., Fukushima, M. and Yoshizawa, Y. (2009), "Extended-FEM for the solidfluid mixture two-scale problems with BCC and FCC microstructures", Interact. Multiscale Mech., 2(1), 45-68. https://doi.org/10.12989/imm.2009.2.1.045
  22. Sethian, J.A. (1999), Level set methods and fast marching methods, Cambridge University Press.
  23. Souli, M. and Olovson, L. (2003), "Fluid-structure interaction in LS-DYNA: industrial applications", 4th European LS-DYNA Users Conference, 35-42.
  24. Sussman, M., Smereka, P. and Osher, S. (1994), "A level set approach for computing solution to incompressible two-phase flow", J. Comput. Phys., 114(1), 146-159. https://doi.org/10.1006/jcph.1994.1155
  25. Takewaki, H., Nishiguchi, A. and Yabe, T. (1985), "The cubic-interpolated pseudo-particle (CIP) method for solving hyperbolic-type equations", J. Comput. Phys., 61(2), 261-268. https://doi.org/10.1016/0021-9991(85)90085-3
  26. Wall, W.A. and Ramm, E. (1998), "Fluid-structure interaction based upon a stabilized (ALE) finite element method", Computational Mechanics (World Congress), New Trends and Applications, 1-20.
  27. Wang, X. and Liu, W.K. (2004), "Extended immersed boundary method using FEM and RKPM", Comput. Meth. Appl. M., 193(12-14), 1305-1321. https://doi.org/10.1016/j.cma.2003.12.024
  28. Wilkins, M.L. (1980), "Use of artificial viscosity in multidimensional fluid dynamics calculation", J. Comput. Phys., 36(3), 281-303. https://doi.org/10.1016/0021-9991(80)90161-8
  29. Zhang, H., Raman, S., Gopal, M. and Han, T. (2004), "Evaluation and comparison of CFD integrated airbag models in LS-DYNA, MADYMO and PAM-CRASH", SAE International, 2004-01-1627, 1-13.
  30. Zhang, L., Gerstenberger, A., Wang, X. and Liu, W.K. (2004), "Immersed finite element method", Comput. Method. Appl. M., 193(21-22), 2051-2067. https://doi.org/10.1016/j.cma.2003.12.044
  31. Zhang, Q. and Hisada, T. (2001), "Analysis of fluid-structure interaction problems with structural buckling and large domain changes by ALE finite element method", Comput. Method. Appl. M., 190(48), 6341-6357. https://doi.org/10.1016/S0045-7825(01)00231-6
  32. Zhang, X., Chen, J.S. and Osher, S. (2008), "A multiple level set method for modeling grain boundary evolution of polycrystalline materials", Interact. Multiscale Mech., 1(2), 191-209. https://doi.org/10.12989/imm.2008.1.2.191