References
- Afanasyev, K.A. and Sansoz, F. (2007), "Strengthening in gold nanopillars with nanoscale twins", Nano Lett., 7(7), 2056-2062. https://doi.org/10.1021/nl070959l
- Agrawal, R., Peng, B., Gdoutos, E.E. and Espinosa, H.D. (2008), "Elasticity size effects in ZnO nanowires- A combined experimental-computational approach", Nano Lett., 8(11), 3668-3674. https://doi.org/10.1021/nl801724b
- Bierman, M.J. and Jin, S. (2009), "Potential applications of hierarchical branching nanowires in solar energy conversion", Energ. Envir. Sci., 2(10), 1050-1059. https://doi.org/10.1039/b912095e
- Cao, A. and Wei, Y. (2006), "Atomistic simulations of the mechanical behavior of fivefold twinned nanowires", Phys. Rev. B, 74(21), 214108. https://doi.org/10.1103/PhysRevB.74.214108
- Cao, A., Wei, Y. and Mao, S. (2007), "Deformation mechanisms of face-centered-cubic metal nanowires with twin boundaries", Appl. Phys. Lett., 90(15), 151909. https://doi.org/10.1063/1.2721367
- Chan, W.K., Luo, M. and Zhang, T.Y. (2008), "Molecular dynamics simulations of four-point bending tests on SiC nanowires", Scripta Mater., 59(7), 692-695. https://doi.org/10.1016/j.scriptamat.2008.05.044
- Chang, W.J. (2003), "Molecular-dynamics study of mechanical properties of nanoscale copper with vacancies under static and cyclic loading", Microelectron. Eng., 65(1-2), 239-246. https://doi.org/10.1016/S0167-9317(02)00887-0
- Chen, J. and Lee, J.D. (2010), "Atomistic analysis of nano/micro biosensors", Interact. Multiscale Mech, 3(2), 111-121. https://doi.org/10.12989/imm.2010.3.2.111
- Chen, M.J., Xiao, G.B., Chen, J.X. and Wu, C.Y. (2010), "Research on the influence of machining introduced sub-surface defects and residue stress upon the mechanical properties of single crystal copper", Sci. CHINA Technol. Sci., 53(12), 3161-3167. https://doi.org/10.1007/s11431-010-4122-1
- Chen, Y., Dorgan Jr, B.L., McIlroy, D.N. and Aston, D.E. (2006), "On the importance of boundary conditions on nanomechanical bending behavior and elastic modulus determination of silver nanowires", J. Appl. Phys., 100(10), 104301. https://doi.org/10.1063/1.2382265
- Deng, C. and Sansoz, F. (2009a), "Enabling ultrahigh plastic flow and work hardening in twinned gold nanowires", Nano Lett., 9(4), 1517-1522. https://doi.org/10.1021/nl803553b
- Deng, C. and Sansoz, F. (2009b), "Fundamental differences in the plasticity of periodically twinned nanowires in Au, Ag, Al, Cu, Pb and Ni", Acta Mater., 57(20), 6090-6101. https://doi.org/10.1016/j.actamat.2009.08.035
- Deng, C. and Sansoz, F. (2009c), "Size-dependent yield stress in twinned gold nanowires mediated by sitespecific surface dislocation emission", Appl. Phys. Lett., 95(9), 091914. https://doi.org/10.1063/1.3222936
- Diao, J., Gall, K., Dunn, M. and Zimmerman, J. (2006), "Atomistic simulations of the yielding of gold nanowires", Acta Mater., 54(3), 643-653. https://doi.org/10.1016/j.actamat.2005.10.008
- Diao, J., Gall, K. and Dunn, M.L. (2003), "Surface-stress-induced phase transformation in metal nanowires", Nat. Mater., 2(10), 656-660. https://doi.org/10.1038/nmat977
- Diao, J., Gall, K. and Dunn, M.L. (2004), "Surface stress driven reorientation of gold nanowires", Phys. Rev. B, 70(7), 075413. https://doi.org/10.1103/PhysRevB.70.075413
- Doyama, M. (1995), "Simulation of plastic deformation of small iron and copper single crystals", Nucl. Instrum. Meth. B., 102(1-4), 107-112. https://doi.org/10.1016/0168-583X(95)80125-6
- Ekinci, K. and Roukes, M. (2005), "Nanoelectromechanical systems", Rev. Sci. Instrum., 76(6), 061101. https://doi.org/10.1063/1.1927327
- Feng, X., He, R., Yang, P. and Roukes, M. (2007), "Very high frequency silicon nanowire electromechanical resonators", Nano Lett., 7(7), 1953-1959. https://doi.org/10.1021/nl0706695
- Foiles, S.M., Baskes, M.I. and Daw, M.S. (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Phys. Rev. B, 33(12), 7983-7991. https://doi.org/10.1103/PhysRevB.33.7983
- Gall, K., Diao, J. and Dunn, M.L. (2004), "The strength of gold nanowires", Nano Lett., 4(12), 2431-2436. https://doi.org/10.1021/nl048456s
- Gao, Y., Wang, F., Zhu, T. and Zhao, J. (2010), "Investigation on the mechanical behaviors of copper nanowires under torsion", Comput. Mater. Sci., 49(4), 826-830. https://doi.org/10.1016/j.commatsci.2010.06.031
- Gu, Y.T. and Zhan, H.F. (2010), "MD investigations for mechanical properties of copper nanowire with and without surface defects", Int. J. Comput. Meth., 9(1), 1-8.
- Horstemeyer, M., Baskes, M. and Plimpton, S. (2001), "Length scale and time scale effects on the plastic flow of fcc metals", Acta Mater., 49(20), 4363-4374. https://doi.org/10.1016/S1359-6454(01)00149-5
- Ikeda, H., Qi, Y., Çagin, T., Samwer, K., Johnson, W.L. and Goddard, W.A. (1999), "Strain rate induced amorphization in metallic nanowires", Phys. Rev. Lett., 82(14), 2900-2903. https://doi.org/10.1103/PhysRevLett.82.2900
- Ji, C. and Park, H. (2006a), "Geometric effects on the inelastic deformation of metal nanowires", Appl. Phys. Lett., 89(18), 181916.
- Ji, C. and Park, H. (2007), "The coupled effects of geometry and surface orientation on the mechanical properties of metal nanowires", Nanotechnology, 18(30), 305704.
- Ji, C. and Park, H.S. (2006b), "Geometric effects on the inelastic deformation of metal nanowires", Appl. Phys. Lett., 89(18), 181916.
- Jiang, S., Zhang, H., Zheng, Y. and Chen, Z. (2009), "Atomistic study of the mechanical response of copper nanowires under torsion", J. Phys. D. Appl. Phys., 42(13), 135408. https://doi.org/10.1088/0022-3727/42/13/135408
- Jiang, S., Zhang, H., Zheng, Y. and Chen, Z. (2010), "Loading path effect on the mechanical behaviour and fivefold twinning of copper nanowires", J. Phys. D. Appl. Phys., 43(33), 335402. https://doi.org/10.1088/0022-3727/43/33/335402
- Jiang, W. and Batra, R. (2009), "Molecular statics simulations of buckling and yielding of gold nanowires deformed in axial compression", Acta Mater., 57(16), 4921-4932. https://doi.org/10.1016/j.actamat.2009.06.062
- Jing, G., Duan, H., Sun, X., Zhang, Z., Xu, J., Li, Y., Wang, J. and Yu, D. (2006), "Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy", Phys. Rev. B, 73(23), 235409. https://doi.org/10.1103/PhysRevB.73.235409
- Jing, Y., Meng, Q. and Gao, Y. (2009), "Molecular dynamics simulation on the buckling behavior of silicon nanowires under uniaxial compression", Comput. Mater. Sci., 45(2), 321-326. https://doi.org/10.1016/j.commatsci.2008.10.005
- Koh, A. and Lee, H. (2006), "Shock-induced localized amorphization in metallic nanorods with strain-ratedependent characteristics", Nano Lett., 6(10), 2260-2267. https://doi.org/10.1021/nl061640o
- Komanduri, R., Chandrasekaran, N. and Raff, L. (2001), "Molecular dynamics (MD) simulation of uniaxial tension of some single-crystal cubic metals at nanolevel", Int. J. Mech. Sci., 43(10), 2237-2260. https://doi.org/10.1016/S0020-7403(01)00043-1
- Leach, A.M., McDowell, M. and Gall, K. (2007), "Deformation of top down and bottom up silver nanowires", Adv. Funct. Mater., 17(1), 43-53. https://doi.org/10.1002/adfm.200600735
- Liang, W. and Zhou, M. (2003), "Size and strain rate effects in tensile deformation of Cu nanowires", Nanotechnology, 2, 452-455.
- Liang, W. and Zhou, M. (2004), "Response of copper nanowires in dynamic tensile deformation", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 218(6), 599-606. https://doi.org/10.1243/095440604774202231
- Liang, W., Zhou, M. and Ke, F. (2005), "Shape memory effect in Cu nanowires", Nano Lett., 5(10), 2039-2043. https://doi.org/10.1021/nl0515910
- Lim, C., Li, C. and Yu, J. (2009), "The effects of stiffness strengthening nonlocal stress and axial tension on free vibration of cantilever nanobeams", Interact. Multiscale Mech., 2(3), 223-233. https://doi.org/10.12989/imm.2009.2.3.223
- Lin, Y. and Pen, D. (2007), "Analogous mechanical behaviors in and directions of Cu nanowires under tension and compression at a high strain rate", Nanotechnology, 18(39), 395705. https://doi.org/10.1088/0957-4484/18/39/395705
- Marszalek, P.E., Greenleaf, W.J., Li, H., Oberhauser, A.F. and Fernandez, J.M. (2000), "Atomic force microscopy captures quantized plastic deformation in gold nanowires", Proceedings of the National Academy of Sciences, 97(12), 6282. https://doi.org/10.1073/pnas.97.12.6282
- McDowell, M., Leach, A. and Gall, K. (2008), "Bending and tensile deformation of metallic nanowires", Model. Simul. Mater. Sc., 16(4), 045003. https://doi.org/10.1088/0965-0393/16/4/045003
- Miller, R. and Shenoy, V. (2000), "Size-dependent elastic properties of nanosized structural elements", Nanotechnology, 11(3), 139-147. https://doi.org/10.1088/0957-4484/11/3/301
- Ni, H., Li, X. and Gao, H. (2006), "Elastic modulus of amorphous SiO nanowires", Appl. Phys. Lett., 88(4), 043108. https://doi.org/10.1063/1.2165275
- Olsson, P.A.T. and Park, H.S. (2011), "Atomistic study of the buckling of gold nanowires", Acta Mater., 59(10), 3883-3894. https://doi.org/10.1016/j.actamat.2011.03.012
- Park, H., Gall, K. and Zimmerman, J. (2006a), "Deformation of FCC nanowires by twinning and slip", J. Mech. Phys. Solids, 54(9), 1862-1881. https://doi.org/10.1016/j.jmps.2006.03.006
- Park, H. and Klein, P. (2007), "Surface cauchy-born analysis of surface stress effects on metallic nanowires", Phys. Rev. B, 75(8), 85408. https://doi.org/10.1103/PhysRevB.75.085408
- Park, H., Klein, P. and Wagner, G. (2006b), "A surface cauchy-born model for nanoscale materials", Int. J. Numer. Meth. Eng., 68(10), 1072-1095. https://doi.org/10.1002/nme.1754
- Park, H.S. (2006), "Stress-induced martensitic phase transformation in intermetallic nickel aluminum nanowires", Nano Lett., 6(5), 958-962. https://doi.org/10.1021/nl060024p
- Park, H.S., Cai, W., Espinosa, H.D. and Huang, H. (2009), "Mechanics of crystalline nanowires", MRS Bull., 34(3), 178-183. https://doi.org/10.1557/mrs2009.49
- Park, H.S., Gall, K. and Zimmerman, J.A. (2005), "Shape memory and pseudoelasticity in metal nanowires", Phys. Rev. Lett., 95(25), 255504. https://doi.org/10.1103/PhysRevLett.95.255504
- Park, H.S. and Ji, C. (2006), "On the thermomechanical deformation of silver shape memory nanowires", Acta Mater., 54(10), 2645-2654. https://doi.org/10.1016/j.actamat.2006.02.006
- Park, H.S. and Zimmerman, J.A. (2005), "Modeling inelasticity and failure in gold nanowires", Phys. Rev. B, 72(5), 54106. https://doi.org/10.1103/PhysRevB.72.054106
- Rabkin, E., Nam, H.S. and Srolovitz, D. (2007), "Atomistic simulation of the deformation of gold nanopillars", Acta Mater., 55(6), 2085-2099. https://doi.org/10.1016/j.actamat.2006.10.058
- Richter, G., Hillerich, K., Gianola, D.S., Mo nig, R., Kraft, O. and Volkert, C.A. (2009), "Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition", Nano Lett., 9(8), 3048-3052. https://doi.org/10.1021/nl9015107
- Sansoz, F., Huang, H. and Warner, D.H. (2008), "An atomistic perspective on twinning phenomena in nanoenhanced fcc metals", JOM J. Mineral Metal. Mater. Soc., 60(9), 79-84. https://doi.org/10.1007/s11837-008-0124-x
- Setoodeh, A.R., Attariani, H. and Khosrownejad, M. (2008), "Nickel nanowires under uniaxial loads: A molecular dynamics simulation study", Comp. Mater. Sci., 44(2), 378-384. https://doi.org/10.1016/j.commatsci.2008.03.035
- Shim, H.W., Zhou, L., Huang, H. and Cale, T.S. (2005), "Nanoplate elasticity under surface reconstruction", Appl. Phys. Lett., 86(15), 151912. https://doi.org/10.1063/1.1897825
- Streitz, F., Cammarata, R. and Sieradzki, K. (1994), "Surface-stress effects on elastic properties. I. Thin metal films", Phys. Rev. B, 49(15), 10699-10706. https://doi.org/10.1103/PhysRevB.49.10699
- Sutrakar, V.K. and Mahapatra, D.R. (2010), "Single and multi-step phase transformation in CuZr nanowire under compressive/tensile loading", Intermetallics, 18(4), 679-687. https://doi.org/10.1016/j.intermet.2009.11.006
- Tanner, S., Gray, J., Rogers, C., Bertness, K. and Sanford, N. (2007), "High-Q GaN nanowire resonators and oscillators", Appl. Phys. Lett., 91(20), 203117. https://doi.org/10.1063/1.2815747
- Timoshenko, S.P. and Gere, J.M. (1961), Theory of elastic stability, McGraw-Hill, New York.
- Tschopp, M. and McDowell, D. (2007), "Tension-compression asymmetry in homogeneous dislocation nucleation in single crystal copper", Appl. Phys. Lett., 90(12), 121916. https://doi.org/10.1063/1.2715137
- Wan, J., Fan, Y., Gong, D., Shen, S. and Fan, X. (1999), "Surface relaxation and stress of fcc metals: Cu, Ag, Au, Ni, Pd, Pt, Al and Pb", Model. Simul. Mater. Sc., 7(2), 189. https://doi.org/10.1088/0965-0393/7/2/005
- Wang, B., Shi, D., Jia, J., Wang, G., Chen, X. and Zhao, J. (2005), "Elastic and plastic deformations of nickel nanowires under uniaxial compression", Physica E., 30(1-2), 45-50. https://doi.org/10.1016/j.physe.2005.07.018
- Wang, G. and Feng, X. (2009), "Surface effects on buckling of nanowires under uniaxial compression", Appl. Phys. Lett., 94(14), 141913. https://doi.org/10.1063/1.3117505
- Wang, Z., Zu, X., Gao, F. and Weber, W.J. (2008), "Atomistic simulations of the mechanical properties of silicon carbide nanowires", Phys. Rev. B, 77(22), 224113. https://doi.org/10.1103/PhysRevB.77.224113
- Wang, Z.J., Liu, C., Li, Z. and Zhang, T.Y. (2010), "Size-dependent elastic properties of Au nanowires under bending and tension-Surfaces versus core nonlinearity", J. Appl. Phys., 108(8), 083506. https://doi.org/10.1063/1.3493264
- Weinberger, C. and Cai, W. (2010a), "Orientation-dependent plasticity in metal nanowires under torsion: Twist boundary formation and eshelby twist", Nano Lett., 10(1), 139-142. https://doi.org/10.1021/nl903041m
- Weinberger, C.R. and Cai, W. (2010b), "Plasticity of metal wires in torsion: Molecular dynamics and dislocation dynamics simulations", J. Mech. Phys. Solids, 58(7), 1011-1025. https://doi.org/10.1016/j.jmps.2010.04.010
- Wen, Y.H., Wang, Q., Liew, K.M. and Zhu, Z.Z. (2010), "Compressive mechanical behavior of Au nanowires", Phys. Lett. A, 374(29), 2949-2952. https://doi.org/10.1016/j.physleta.2010.05.015
- Wen, Y.H., Zhu, Z.Z., Shao, G.F. and Zhu, R.Z. (2005), "The uniaxial tensile deformation of Ni nanowire: atomic-scale computer simulations", Physica E., 27(1-2), 113-120. https://doi.org/10.1016/j.physe.2004.10.009
- Wu, B., Heidelberg, A. and Boland, J.J. (2005), "Mechanical properties of ultrahigh-strength gold nanowires", Nat. Mater., 4(7), 525-529. https://doi.org/10.1038/nmat1403
- Wu, B., Heidelberg, A., Boland, J.J., Sader, J.E., Sun, X.M. and Li, Y.D. (2006), "Microstructure-hardened silver nanowires", Nano Lett., 6(3), 468-472. https://doi.org/10.1021/nl052427f
- Wu, H. (2004), "Molecular dynamics simulation of loading rate and surface effects on the elastic bending behavior of metal nanorod", Comp. Mater. Sci., 31(3-4), 287-291. https://doi.org/10.1016/j.commatsci.2004.03.017
- Wu, H. (2006a), "Molecular dynamics study on mechanics of metal nanowire", Mech. Res. Commun., 33(1), 9-16. https://doi.org/10.1016/j.mechrescom.2005.05.012
- Wu, H.A. (2006b), "Molecular dynamics study of the mechanics of metal nanowires at finite temperature", Eur. J. Mech. A-Solid., 25(2), 370-377. https://doi.org/10.1016/j.euromechsol.2005.11.008
- Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F. and Yan, H. (2003), "One-dimensional nanostructures: synthesis, characterization, and applications", Adv. Mater., 15(5), 353-389. https://doi.org/10.1002/adma.200390087
- Yang, Z., Lu, Z. and Zhao, Y.P. (2009), "Atomistic simulation on size-dependent yield strength and defects evolution of metal nanowires", Comp. Mater. Sci., 46(1), 142-150. https://doi.org/10.1016/j.commatsci.2009.02.015
- Yuan, L., Shan, D. and Guo, B. (2007), "Molecular dynamics simulation of tensile deformation of nano-single crystal aluminum", J. Mater. Process. Tech., 184(1-3), 1-5. https://doi.org/10.1016/j.jmatprotec.2006.10.042
- Zhan, H.F. and Gu, Y.T. (2011a), "Exploration of the defect's effect on the mechanical properties of different orientated nanowires", Adv. Mater. Res., 328(30), 1239-1244.
- Zhan, H.F. and Gu, Y.T. (2011b), Molecular dynamics study of dynamic buckling properties of nanowires with defect., 14th Asia-Pacific Vibration Conference, HongKong.
- Zhan, H.F. and Gu, Y.T. (2011c), "Atomistic exploration of deformation properties of copper nanowires with preexisting defects", Comp. Model. Eng. Sci., 80(1), 23-56.
- Zhan, H.F., Gu, Y.T., Chen, Y. and Yarlagadda, P.K.D.V. (2011a), "Numerical exploration of the defect's effect on mechanical properties of nanowires under torsion", Adv. Mater. Res., 335-336, 498-501. https://doi.org/10.4028/www.scientific.net/AMR.335-336.498
- Zhan, H.F., Gu, Y.T., Yan, C., Feng, X.Q. and Yarlagadda, P.K.D.V. (2011b), "Numerical exploration of plastic deformation mechanisms of copper nanowires with surface defects", Comp. Mater. Sci., 50(12), 3425-3430. https://doi.org/10.1016/j.commatsci.2011.07.004
- Zhan, H.F., Gu, Y.T. and Yarlagadda, P.K.D.V. (2010), Atomistic numerical investigation of single-crystal copper nanowire with surface defect, 6th Australasian Congress on Applied Mechanics, Perth. Engineers Australia.
- Zhan, H.F., Gu, Y.T. and Yarlagadda, P.K.D.V. (2011c), "Advanced numerical characterization of monocrystalline copper with defects", Adv. Sci. Lett., 4(4-5), 1293-1301. https://doi.org/10.1166/asl.2011.1496
- Zhang, Y. and Huang, H. (2009), "Do twin boundaries always strengthen metal nanowires?", Nanoscale Res. Lett., 4(1), 34-38. https://doi.org/10.1007/s11671-008-9198-1
- Zhao, K.J., Chen, C.Q., Shen, Y.P. and Lu, T.J. (2009), "Molecular dynamics study on the nano-void growth in face-centered cubic single crystal copper", Comp. Mater. Sci., 46(3), 749-754. https://doi.org/10.1016/j.commatsci.2009.04.034
- Zheng, Y., Zhang, H., Chen, Z., Wang, L., Zhang, Z. and Wang, J. (2008), "Formation of two conjoint fivefold deformation twins in copper nanowires with molecular dynamics simulation", Appl. Phys. Lett., 92(4), 041913. https://doi.org/10.1063/1.2839581
- Ziegenhain, G., Hartmaier, A. and Urbassek, H.M. (2009), "Pair vs many-body potentials: Influence on elastic and plastic behavior in nanoindentation of fcc metals", J. Mech. Phys. Solids, 57(9), 1514-1526. https://doi.org/10.1016/j.jmps.2009.05.011
Cited by
- ATOMISTIC SIMULATION OF TORSIONAL VIBRATION AND PLASTIC DEFORMATION OF FIVE-FOLD TWINNED COPPER NANOWIRES vol.11, pp.supp01, 2014, https://doi.org/10.1142/S0219876213440106