DOI QR코드

DOI QR Code

Numerical investigation of mechanical properties of nanowires: a review

  • Gu, Y.T. (School of Engineering Systems, Queensland University of Technology) ;
  • Zhan, H.F. (School of Engineering Systems, Queensland University of Technology) ;
  • Xu, Xu (School of Mathematics, Jilin University)
  • 투고 : 2011.07.31
  • 심사 : 2012.04.05
  • 발행 : 2012.06.25

초록

Nanowires (NWs) have attracted intensive researches owing to the broad applications that arise from their remarkable properties. Over the last decade, immense numerical studies have been conducted for the numerical investigation of mechanical properties of NWs. Among these numerical simulations, the molecular dynamics (MD) plays a key role. Herein we present a brief review on the current state of the MD investigation of nanowires. Emphasis will be placed on the FCC metal NWs, especially the Cu NWs. MD investigations of perfect NWs' mechanical properties under different deformation conditions including tension, compression, torsion and bending are firstly revisited. Following in succession, the studies for defected NWs including the defects of twin boundaries (TBs) and pre-existing defects are discussed. The different deformation mechanism incurred by the presentation of defects is explored and discussed. This review reveals that the numerical simulation is an important tool to investigate the properties of NWs. However, the substantial gaps between the experimental measurements and MD results suggest the urgent need of multi-scale simulation technique.

키워드

참고문헌

  1. Afanasyev, K.A. and Sansoz, F. (2007), "Strengthening in gold nanopillars with nanoscale twins", Nano Lett., 7(7), 2056-2062. https://doi.org/10.1021/nl070959l
  2. Agrawal, R., Peng, B., Gdoutos, E.E. and Espinosa, H.D. (2008), "Elasticity size effects in ZnO nanowires- A combined experimental-computational approach", Nano Lett., 8(11), 3668-3674. https://doi.org/10.1021/nl801724b
  3. Bierman, M.J. and Jin, S. (2009), "Potential applications of hierarchical branching nanowires in solar energy conversion", Energ. Envir. Sci., 2(10), 1050-1059. https://doi.org/10.1039/b912095e
  4. Cao, A. and Wei, Y. (2006), "Atomistic simulations of the mechanical behavior of fivefold twinned nanowires", Phys. Rev. B, 74(21), 214108. https://doi.org/10.1103/PhysRevB.74.214108
  5. Cao, A., Wei, Y. and Mao, S. (2007), "Deformation mechanisms of face-centered-cubic metal nanowires with twin boundaries", Appl. Phys. Lett., 90(15), 151909. https://doi.org/10.1063/1.2721367
  6. Chan, W.K., Luo, M. and Zhang, T.Y. (2008), "Molecular dynamics simulations of four-point bending tests on SiC nanowires", Scripta Mater., 59(7), 692-695. https://doi.org/10.1016/j.scriptamat.2008.05.044
  7. Chang, W.J. (2003), "Molecular-dynamics study of mechanical properties of nanoscale copper with vacancies under static and cyclic loading", Microelectron. Eng., 65(1-2), 239-246. https://doi.org/10.1016/S0167-9317(02)00887-0
  8. Chen, J. and Lee, J.D. (2010), "Atomistic analysis of nano/micro biosensors", Interact. Multiscale Mech, 3(2), 111-121. https://doi.org/10.12989/imm.2010.3.2.111
  9. Chen, M.J., Xiao, G.B., Chen, J.X. and Wu, C.Y. (2010), "Research on the influence of machining introduced sub-surface defects and residue stress upon the mechanical properties of single crystal copper", Sci. CHINA Technol. Sci., 53(12), 3161-3167. https://doi.org/10.1007/s11431-010-4122-1
  10. Chen, Y., Dorgan Jr, B.L., McIlroy, D.N. and Aston, D.E. (2006), "On the importance of boundary conditions on nanomechanical bending behavior and elastic modulus determination of silver nanowires", J. Appl. Phys., 100(10), 104301. https://doi.org/10.1063/1.2382265
  11. Deng, C. and Sansoz, F. (2009a), "Enabling ultrahigh plastic flow and work hardening in twinned gold nanowires", Nano Lett., 9(4), 1517-1522. https://doi.org/10.1021/nl803553b
  12. Deng, C. and Sansoz, F. (2009b), "Fundamental differences in the plasticity of periodically twinned nanowires in Au, Ag, Al, Cu, Pb and Ni", Acta Mater., 57(20), 6090-6101. https://doi.org/10.1016/j.actamat.2009.08.035
  13. Deng, C. and Sansoz, F. (2009c), "Size-dependent yield stress in twinned gold nanowires mediated by sitespecific surface dislocation emission", Appl. Phys. Lett., 95(9), 091914. https://doi.org/10.1063/1.3222936
  14. Diao, J., Gall, K., Dunn, M. and Zimmerman, J. (2006), "Atomistic simulations of the yielding of gold nanowires", Acta Mater., 54(3), 643-653. https://doi.org/10.1016/j.actamat.2005.10.008
  15. Diao, J., Gall, K. and Dunn, M.L. (2003), "Surface-stress-induced phase transformation in metal nanowires", Nat. Mater., 2(10), 656-660. https://doi.org/10.1038/nmat977
  16. Diao, J., Gall, K. and Dunn, M.L. (2004), "Surface stress driven reorientation of gold nanowires", Phys. Rev. B, 70(7), 075413. https://doi.org/10.1103/PhysRevB.70.075413
  17. Doyama, M. (1995), "Simulation of plastic deformation of small iron and copper single crystals", Nucl. Instrum. Meth. B., 102(1-4), 107-112. https://doi.org/10.1016/0168-583X(95)80125-6
  18. Ekinci, K. and Roukes, M. (2005), "Nanoelectromechanical systems", Rev. Sci. Instrum., 76(6), 061101. https://doi.org/10.1063/1.1927327
  19. Feng, X., He, R., Yang, P. and Roukes, M. (2007), "Very high frequency silicon nanowire electromechanical resonators", Nano Lett., 7(7), 1953-1959. https://doi.org/10.1021/nl0706695
  20. Foiles, S.M., Baskes, M.I. and Daw, M.S. (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Phys. Rev. B, 33(12), 7983-7991. https://doi.org/10.1103/PhysRevB.33.7983
  21. Gall, K., Diao, J. and Dunn, M.L. (2004), "The strength of gold nanowires", Nano Lett., 4(12), 2431-2436. https://doi.org/10.1021/nl048456s
  22. Gao, Y., Wang, F., Zhu, T. and Zhao, J. (2010), "Investigation on the mechanical behaviors of copper nanowires under torsion", Comput. Mater. Sci., 49(4), 826-830. https://doi.org/10.1016/j.commatsci.2010.06.031
  23. Gu, Y.T. and Zhan, H.F. (2010), "MD investigations for mechanical properties of copper nanowire with and without surface defects", Int. J. Comput. Meth., 9(1), 1-8.
  24. Horstemeyer, M., Baskes, M. and Plimpton, S. (2001), "Length scale and time scale effects on the plastic flow of fcc metals", Acta Mater., 49(20), 4363-4374. https://doi.org/10.1016/S1359-6454(01)00149-5
  25. Ikeda, H., Qi, Y., Çagin, T., Samwer, K., Johnson, W.L. and Goddard, W.A. (1999), "Strain rate induced amorphization in metallic nanowires", Phys. Rev. Lett., 82(14), 2900-2903. https://doi.org/10.1103/PhysRevLett.82.2900
  26. Ji, C. and Park, H. (2006a), "Geometric effects on the inelastic deformation of metal nanowires", Appl. Phys. Lett., 89(18), 181916.
  27. Ji, C. and Park, H. (2007), "The coupled effects of geometry and surface orientation on the mechanical properties of metal nanowires", Nanotechnology, 18(30), 305704.
  28. Ji, C. and Park, H.S. (2006b), "Geometric effects on the inelastic deformation of metal nanowires", Appl. Phys. Lett., 89(18), 181916.
  29. Jiang, S., Zhang, H., Zheng, Y. and Chen, Z. (2009), "Atomistic study of the mechanical response of copper nanowires under torsion", J. Phys. D. Appl. Phys., 42(13), 135408. https://doi.org/10.1088/0022-3727/42/13/135408
  30. Jiang, S., Zhang, H., Zheng, Y. and Chen, Z. (2010), "Loading path effect on the mechanical behaviour and fivefold twinning of copper nanowires", J. Phys. D. Appl. Phys., 43(33), 335402. https://doi.org/10.1088/0022-3727/43/33/335402
  31. Jiang, W. and Batra, R. (2009), "Molecular statics simulations of buckling and yielding of gold nanowires deformed in axial compression", Acta Mater., 57(16), 4921-4932. https://doi.org/10.1016/j.actamat.2009.06.062
  32. Jing, G., Duan, H., Sun, X., Zhang, Z., Xu, J., Li, Y., Wang, J. and Yu, D. (2006), "Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy", Phys. Rev. B, 73(23), 235409. https://doi.org/10.1103/PhysRevB.73.235409
  33. Jing, Y., Meng, Q. and Gao, Y. (2009), "Molecular dynamics simulation on the buckling behavior of silicon nanowires under uniaxial compression", Comput. Mater. Sci., 45(2), 321-326. https://doi.org/10.1016/j.commatsci.2008.10.005
  34. Koh, A. and Lee, H. (2006), "Shock-induced localized amorphization in metallic nanorods with strain-ratedependent characteristics", Nano Lett., 6(10), 2260-2267. https://doi.org/10.1021/nl061640o
  35. Komanduri, R., Chandrasekaran, N. and Raff, L. (2001), "Molecular dynamics (MD) simulation of uniaxial tension of some single-crystal cubic metals at nanolevel", Int. J. Mech. Sci., 43(10), 2237-2260. https://doi.org/10.1016/S0020-7403(01)00043-1
  36. Leach, A.M., McDowell, M. and Gall, K. (2007), "Deformation of top down and bottom up silver nanowires", Adv. Funct. Mater., 17(1), 43-53. https://doi.org/10.1002/adfm.200600735
  37. Liang, W. and Zhou, M. (2003), "Size and strain rate effects in tensile deformation of Cu nanowires", Nanotechnology, 2, 452-455.
  38. Liang, W. and Zhou, M. (2004), "Response of copper nanowires in dynamic tensile deformation", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 218(6), 599-606. https://doi.org/10.1243/095440604774202231
  39. Liang, W., Zhou, M. and Ke, F. (2005), "Shape memory effect in Cu nanowires", Nano Lett., 5(10), 2039-2043. https://doi.org/10.1021/nl0515910
  40. Lim, C., Li, C. and Yu, J. (2009), "The effects of stiffness strengthening nonlocal stress and axial tension on free vibration of cantilever nanobeams", Interact. Multiscale Mech., 2(3), 223-233. https://doi.org/10.12989/imm.2009.2.3.223
  41. Lin, Y. and Pen, D. (2007), "Analogous mechanical behaviors in and directions of Cu nanowires under tension and compression at a high strain rate", Nanotechnology, 18(39), 395705. https://doi.org/10.1088/0957-4484/18/39/395705
  42. Marszalek, P.E., Greenleaf, W.J., Li, H., Oberhauser, A.F. and Fernandez, J.M. (2000), "Atomic force microscopy captures quantized plastic deformation in gold nanowires", Proceedings of the National Academy of Sciences, 97(12), 6282. https://doi.org/10.1073/pnas.97.12.6282
  43. McDowell, M., Leach, A. and Gall, K. (2008), "Bending and tensile deformation of metallic nanowires", Model. Simul. Mater. Sc., 16(4), 045003. https://doi.org/10.1088/0965-0393/16/4/045003
  44. Miller, R. and Shenoy, V. (2000), "Size-dependent elastic properties of nanosized structural elements", Nanotechnology, 11(3), 139-147. https://doi.org/10.1088/0957-4484/11/3/301
  45. Ni, H., Li, X. and Gao, H. (2006), "Elastic modulus of amorphous SiO nanowires", Appl. Phys. Lett., 88(4), 043108. https://doi.org/10.1063/1.2165275
  46. Olsson, P.A.T. and Park, H.S. (2011), "Atomistic study of the buckling of gold nanowires", Acta Mater., 59(10), 3883-3894. https://doi.org/10.1016/j.actamat.2011.03.012
  47. Park, H., Gall, K. and Zimmerman, J. (2006a), "Deformation of FCC nanowires by twinning and slip", J. Mech. Phys. Solids, 54(9), 1862-1881. https://doi.org/10.1016/j.jmps.2006.03.006
  48. Park, H. and Klein, P. (2007), "Surface cauchy-born analysis of surface stress effects on metallic nanowires", Phys. Rev. B, 75(8), 85408. https://doi.org/10.1103/PhysRevB.75.085408
  49. Park, H., Klein, P. and Wagner, G. (2006b), "A surface cauchy-born model for nanoscale materials", Int. J. Numer. Meth. Eng., 68(10), 1072-1095. https://doi.org/10.1002/nme.1754
  50. Park, H.S. (2006), "Stress-induced martensitic phase transformation in intermetallic nickel aluminum nanowires", Nano Lett., 6(5), 958-962. https://doi.org/10.1021/nl060024p
  51. Park, H.S., Cai, W., Espinosa, H.D. and Huang, H. (2009), "Mechanics of crystalline nanowires", MRS Bull., 34(3), 178-183. https://doi.org/10.1557/mrs2009.49
  52. Park, H.S., Gall, K. and Zimmerman, J.A. (2005), "Shape memory and pseudoelasticity in metal nanowires", Phys. Rev. Lett., 95(25), 255504. https://doi.org/10.1103/PhysRevLett.95.255504
  53. Park, H.S. and Ji, C. (2006), "On the thermomechanical deformation of silver shape memory nanowires", Acta Mater., 54(10), 2645-2654. https://doi.org/10.1016/j.actamat.2006.02.006
  54. Park, H.S. and Zimmerman, J.A. (2005), "Modeling inelasticity and failure in gold nanowires", Phys. Rev. B, 72(5), 54106. https://doi.org/10.1103/PhysRevB.72.054106
  55. Rabkin, E., Nam, H.S. and Srolovitz, D. (2007), "Atomistic simulation of the deformation of gold nanopillars", Acta Mater., 55(6), 2085-2099. https://doi.org/10.1016/j.actamat.2006.10.058
  56. Richter, G., Hillerich, K., Gianola, D.S., Mo nig, R., Kraft, O. and Volkert, C.A. (2009), "Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition", Nano Lett., 9(8), 3048-3052. https://doi.org/10.1021/nl9015107
  57. Sansoz, F., Huang, H. and Warner, D.H. (2008), "An atomistic perspective on twinning phenomena in nanoenhanced fcc metals", JOM J. Mineral Metal. Mater. Soc., 60(9), 79-84. https://doi.org/10.1007/s11837-008-0124-x
  58. Setoodeh, A.R., Attariani, H. and Khosrownejad, M. (2008), "Nickel nanowires under uniaxial loads: A molecular dynamics simulation study", Comp. Mater. Sci., 44(2), 378-384. https://doi.org/10.1016/j.commatsci.2008.03.035
  59. Shim, H.W., Zhou, L., Huang, H. and Cale, T.S. (2005), "Nanoplate elasticity under surface reconstruction", Appl. Phys. Lett., 86(15), 151912. https://doi.org/10.1063/1.1897825
  60. Streitz, F., Cammarata, R. and Sieradzki, K. (1994), "Surface-stress effects on elastic properties. I. Thin metal films", Phys. Rev. B, 49(15), 10699-10706. https://doi.org/10.1103/PhysRevB.49.10699
  61. Sutrakar, V.K. and Mahapatra, D.R. (2010), "Single and multi-step phase transformation in CuZr nanowire under compressive/tensile loading", Intermetallics, 18(4), 679-687. https://doi.org/10.1016/j.intermet.2009.11.006
  62. Tanner, S., Gray, J., Rogers, C., Bertness, K. and Sanford, N. (2007), "High-Q GaN nanowire resonators and oscillators", Appl. Phys. Lett., 91(20), 203117. https://doi.org/10.1063/1.2815747
  63. Timoshenko, S.P. and Gere, J.M. (1961), Theory of elastic stability, McGraw-Hill, New York.
  64. Tschopp, M. and McDowell, D. (2007), "Tension-compression asymmetry in homogeneous dislocation nucleation in single crystal copper", Appl. Phys. Lett., 90(12), 121916. https://doi.org/10.1063/1.2715137
  65. Wan, J., Fan, Y., Gong, D., Shen, S. and Fan, X. (1999), "Surface relaxation and stress of fcc metals: Cu, Ag, Au, Ni, Pd, Pt, Al and Pb", Model. Simul. Mater. Sc., 7(2), 189. https://doi.org/10.1088/0965-0393/7/2/005
  66. Wang, B., Shi, D., Jia, J., Wang, G., Chen, X. and Zhao, J. (2005), "Elastic and plastic deformations of nickel nanowires under uniaxial compression", Physica E., 30(1-2), 45-50. https://doi.org/10.1016/j.physe.2005.07.018
  67. Wang, G. and Feng, X. (2009), "Surface effects on buckling of nanowires under uniaxial compression", Appl. Phys. Lett., 94(14), 141913. https://doi.org/10.1063/1.3117505
  68. Wang, Z., Zu, X., Gao, F. and Weber, W.J. (2008), "Atomistic simulations of the mechanical properties of silicon carbide nanowires", Phys. Rev. B, 77(22), 224113. https://doi.org/10.1103/PhysRevB.77.224113
  69. Wang, Z.J., Liu, C., Li, Z. and Zhang, T.Y. (2010), "Size-dependent elastic properties of Au nanowires under bending and tension-Surfaces versus core nonlinearity", J. Appl. Phys., 108(8), 083506. https://doi.org/10.1063/1.3493264
  70. Weinberger, C. and Cai, W. (2010a), "Orientation-dependent plasticity in metal nanowires under torsion: Twist boundary formation and eshelby twist", Nano Lett., 10(1), 139-142. https://doi.org/10.1021/nl903041m
  71. Weinberger, C.R. and Cai, W. (2010b), "Plasticity of metal wires in torsion: Molecular dynamics and dislocation dynamics simulations", J. Mech. Phys. Solids, 58(7), 1011-1025. https://doi.org/10.1016/j.jmps.2010.04.010
  72. Wen, Y.H., Wang, Q., Liew, K.M. and Zhu, Z.Z. (2010), "Compressive mechanical behavior of Au nanowires", Phys. Lett. A, 374(29), 2949-2952. https://doi.org/10.1016/j.physleta.2010.05.015
  73. Wen, Y.H., Zhu, Z.Z., Shao, G.F. and Zhu, R.Z. (2005), "The uniaxial tensile deformation of Ni nanowire: atomic-scale computer simulations", Physica E., 27(1-2), 113-120. https://doi.org/10.1016/j.physe.2004.10.009
  74. Wu, B., Heidelberg, A. and Boland, J.J. (2005), "Mechanical properties of ultrahigh-strength gold nanowires", Nat. Mater., 4(7), 525-529. https://doi.org/10.1038/nmat1403
  75. Wu, B., Heidelberg, A., Boland, J.J., Sader, J.E., Sun, X.M. and Li, Y.D. (2006), "Microstructure-hardened silver nanowires", Nano Lett., 6(3), 468-472. https://doi.org/10.1021/nl052427f
  76. Wu, H. (2004), "Molecular dynamics simulation of loading rate and surface effects on the elastic bending behavior of metal nanorod", Comp. Mater. Sci., 31(3-4), 287-291. https://doi.org/10.1016/j.commatsci.2004.03.017
  77. Wu, H. (2006a), "Molecular dynamics study on mechanics of metal nanowire", Mech. Res. Commun., 33(1), 9-16. https://doi.org/10.1016/j.mechrescom.2005.05.012
  78. Wu, H.A. (2006b), "Molecular dynamics study of the mechanics of metal nanowires at finite temperature", Eur. J. Mech. A-Solid., 25(2), 370-377. https://doi.org/10.1016/j.euromechsol.2005.11.008
  79. Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F. and Yan, H. (2003), "One-dimensional nanostructures: synthesis, characterization, and applications", Adv. Mater., 15(5), 353-389. https://doi.org/10.1002/adma.200390087
  80. Yang, Z., Lu, Z. and Zhao, Y.P. (2009), "Atomistic simulation on size-dependent yield strength and defects evolution of metal nanowires", Comp. Mater. Sci., 46(1), 142-150. https://doi.org/10.1016/j.commatsci.2009.02.015
  81. Yuan, L., Shan, D. and Guo, B. (2007), "Molecular dynamics simulation of tensile deformation of nano-single crystal aluminum", J. Mater. Process. Tech., 184(1-3), 1-5. https://doi.org/10.1016/j.jmatprotec.2006.10.042
  82. Zhan, H.F. and Gu, Y.T. (2011a), "Exploration of the defect's effect on the mechanical properties of different orientated nanowires", Adv. Mater. Res., 328(30), 1239-1244.
  83. Zhan, H.F. and Gu, Y.T. (2011b), Molecular dynamics study of dynamic buckling properties of nanowires with defect., 14th Asia-Pacific Vibration Conference, HongKong.
  84. Zhan, H.F. and Gu, Y.T. (2011c), "Atomistic exploration of deformation properties of copper nanowires with preexisting defects", Comp. Model. Eng. Sci., 80(1), 23-56.
  85. Zhan, H.F., Gu, Y.T., Chen, Y. and Yarlagadda, P.K.D.V. (2011a), "Numerical exploration of the defect's effect on mechanical properties of nanowires under torsion", Adv. Mater. Res., 335-336, 498-501. https://doi.org/10.4028/www.scientific.net/AMR.335-336.498
  86. Zhan, H.F., Gu, Y.T., Yan, C., Feng, X.Q. and Yarlagadda, P.K.D.V. (2011b), "Numerical exploration of plastic deformation mechanisms of copper nanowires with surface defects", Comp. Mater. Sci., 50(12), 3425-3430. https://doi.org/10.1016/j.commatsci.2011.07.004
  87. Zhan, H.F., Gu, Y.T. and Yarlagadda, P.K.D.V. (2010), Atomistic numerical investigation of single-crystal copper nanowire with surface defect, 6th Australasian Congress on Applied Mechanics, Perth. Engineers Australia.
  88. Zhan, H.F., Gu, Y.T. and Yarlagadda, P.K.D.V. (2011c), "Advanced numerical characterization of monocrystalline copper with defects", Adv. Sci. Lett., 4(4-5), 1293-1301. https://doi.org/10.1166/asl.2011.1496
  89. Zhang, Y. and Huang, H. (2009), "Do twin boundaries always strengthen metal nanowires?", Nanoscale Res. Lett., 4(1), 34-38. https://doi.org/10.1007/s11671-008-9198-1
  90. Zhao, K.J., Chen, C.Q., Shen, Y.P. and Lu, T.J. (2009), "Molecular dynamics study on the nano-void growth in face-centered cubic single crystal copper", Comp. Mater. Sci., 46(3), 749-754. https://doi.org/10.1016/j.commatsci.2009.04.034
  91. Zheng, Y., Zhang, H., Chen, Z., Wang, L., Zhang, Z. and Wang, J. (2008), "Formation of two conjoint fivefold deformation twins in copper nanowires with molecular dynamics simulation", Appl. Phys. Lett., 92(4), 041913. https://doi.org/10.1063/1.2839581
  92. Ziegenhain, G., Hartmaier, A. and Urbassek, H.M. (2009), "Pair vs many-body potentials: Influence on elastic and plastic behavior in nanoindentation of fcc metals", J. Mech. Phys. Solids, 57(9), 1514-1526. https://doi.org/10.1016/j.jmps.2009.05.011

피인용 문헌

  1. ATOMISTIC SIMULATION OF TORSIONAL VIBRATION AND PLASTIC DEFORMATION OF FIVE-FOLD TWINNED COPPER NANOWIRES vol.11, pp.supp01, 2014, https://doi.org/10.1142/S0219876213440106