DOI QR코드

DOI QR Code

Inelastic stability analysis of high strength rectangular concrete-filled steel tubular slender beam-columns

  • Patel, Vipulkumar Ishavarbhai (School of Engineering and Science, Victoria University) ;
  • Liang, Qing Quan (School of Engineering and Science, Victoria University) ;
  • Hadi, Muhammad N.S. (School of Civil, Mining and Environmental Engineering, University of Wollongong)
  • Received : 2011.07.15
  • Accepted : 2012.04.04
  • Published : 2012.06.25

Abstract

There is relatively little numerical study on the behavior of eccentrically loaded high strength rectangular concrete-filled steel tubular (CFST) slender beam-columns with large depth-to-thickness ratios, which may undergo local and global buckling. This paper presents a multiscale numerical model for simulating the interaction local and global buckling behavior of high strength thin-walled rectangular CFST slender beam-columns under eccentric loading. The effects of progressive local buckling are taken into account in the mesoscale model based on fiber element formulations. Computational algorithms based on the M$\ddot{u}$ller's method are developed to obtain complete load-deflection responses of CFST slender beam-columns at the macroscale level. Performance indices are proposed to quantify the performance of CFST slender beam-columns. The accuracy of the multiscale numerical model is examined by comparisons of computer solutions with existing experimental results. The numerical model is utilized to investigate the effects of concrete compressive strength, depth-to-thickness ratio, loading eccentricity ratio and column slenderness ratio on the performance indices. The multiscale numerical model is shown to be accurate and efficient for predicting the interaction buckling behavior of high strength thin-walled CFST slender beam-columns.

Keywords

References

  1. Bridge, R.Q. (1976), "Concrete filled steel tubular columns", School of Civil Engineering, The University of Sydney, Sydney, Australia, Research Report No. R 283.
  2. Ellobody, E., Young, B. and Lam, D. (2006), "Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns", J. Constr. Steel Res., 62(7), 706-715. https://doi.org/10.1016/j.jcsr.2005.11.002
  3. Han, L.H. (2002), "Tests on stub columns of concrete-filled RHS sections", J. Constr. Steel Res., 58(3), 353-372. https://doi.org/10.1016/S0143-974X(01)00059-1
  4. Hu, H.T., Huang, C.S., Wu, M.H. and Wu, Y.M. (2003), "Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect", J. Struct. Eng.-ASCE, 129(10), 1322-1329. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:10(1322)
  5. Lakshmi, B. and Shanmugam, N.E. (2002), "Nonlinear analysis of in-filled steel-concrete composite columns", J. Struct. Eng.-ASCE, 128(7), 922-933. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:7(922)
  6. Laskar, A., Zhong, J., Mo, Y.L. and Hsu, T.T.C. (2009), "Multiscale modeling of reinforced/prestressed concrete thin-walled structures", Interact. Multiscale Mech., 2(1), 69-89. https://doi.org/10.12989/imm.2009.2.1.069
  7. Liang, Q.Q. (2009a), "Performance-based analysis of concrete-filled steel tubular beam-columns, Part I: Theory and algorithms", J. Constr. Steel Res., 65(2), 363-372. https://doi.org/10.1016/j.jcsr.2008.03.007
  8. Liang, Q.Q. (2009b), "Performance-based analysis of concrete-filled steel tubular beam-columns, Part II: Verification and applications", J. Constr. Steel Res., 65(2), 351-362. https://doi.org/10.1016/j.jcsr.2008.03.003
  9. Liang, Q.Q. (2011a), "High strength circular concrete-filled steel tubular slender beam-columns, Part I: Numerical analysis", J. Constr. Steel Res., 67(2), 164-171. https://doi.org/10.1016/j.jcsr.2010.08.006
  10. Liang, Q.Q. (2011b), "High strength circular concrete-filled steel tubular slender beam-columns, Part II: Fundamental behavior", J. Constr. Steel Res., 67(2), 172-180. https://doi.org/10.1016/j.jcsr.2010.08.007
  11. Liang, Q.Q., Uy, B. and Liew, J.Y.R. (2007), "Local buckling of steel plates in concrete-filled steel tubular beamcolumns", J. Constr. Steel Res., 63(3), 396-405. https://doi.org/10.1016/j.jcsr.2006.05.004
  12. Liu, D. (2004), "Behaviour of high strength rectangular concrete-filled steel hollow section columns under eccentric loading", Thin Wall. Struct., 42(12), 1631-1644. https://doi.org/10.1016/j.tws.2004.06.002
  13. Liu, D. (2006), "Behaviour of eccentrically loaded high-strength rectangular concrete-filled steel tubular columns", J. Constr. Steel Res., 62(8), 839-846. https://doi.org/10.1016/j.jcsr.2005.11.020
  14. Mander, J.B., Priestly, M.N.J. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng.-ASCE, 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  15. Muller, D.E. (1956), "A method for solving algebraic equations using an automatic computer", MTAC, 10(56), 208-215.
  16. Nagarajan, P., Jayadeep, U.B. and Pillai, T.M.M. (2010), "Mesoscopic numerical analysis of reinforced concrete beams using a modified micro truss model", Interact. Multiscale Mech., 3(1), 23-37. https://doi.org/10.12989/imm.2010.3.1.023
  17. Patel, V.I., Liang, Q.Q. and Hadi, M.N.S. (2012a), "High strength thin-walled rectangular concrete-filled steel tubular slender beam-columns, Part I: Modeling", J. Constr. Steel Res., 70, 377-384. https://doi.org/10.1016/j.jcsr.2011.10.019
  18. Patel, V.I., Liang, Q.Q. and Hadi, M.N.S. (2012b), "High strength thin-walled rectangular concrete-filled steel tubular slender beam-columns, Part II: Behavior", J. Constr. Steel Res., 70, 368-376. https://doi.org/10.1016/j.jcsr.2011.10.021
  19. Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns", J. Struct. Eng.-ASCE, 130(2), 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180)
  20. Schneider, S.P. (1998), "Axially loaded concrete-filled steel tubes", J. Struct. Eng.-ASCE, 124(10), 1125-1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)
  21. Shakir-Khalil, H. and Zeghiche, J. (1989), "Experimental behaviour of concrete-filled rolled rectangular hollowsection columns", Struct. Eng., 67(19), 346-353.
  22. Tomii, M. and Sakino, K. (1979), "Elastic-plastic behaviour of concrete filled square steel tubular beamcolumns", Trans. Arch. Inst, 280, 111-120.
  23. Zhang, S., Guo, L. and Tian, H. (2003), "Eccentrically loaded high strength concrete-filled square steel tubes", Adv. Struct., Proc. of the Int. Conf. on Advances in Structures, Sydney, Australia.

Cited by

  1. Fundamental behavior of CFT beam-columns under fire loading vol.15, pp.6, 2013, https://doi.org/10.12989/scs.2013.15.6.679
  2. A study on bending strength of reinforced concrete filled steel tubular beam vol.16, pp.6, 2014, https://doi.org/10.12989/scs.2014.16.6.639
  3. Experimental study on circular concrete filled steel tubes with and without shear connectors vol.16, pp.1, 2014, https://doi.org/10.12989/scs.2014.16.1.097
  4. A study on nonlinear analysis and confinement effect of reinforced concrete filled steel tubular column vol.56, pp.5, 2015, https://doi.org/10.12989/sem.2015.56.5.727
  5. Seismic Damage Investigation of Spatial Frames with Steel Beams Connected to L-Shaped Concrete-Filled Steel Tubular (CFST) Columns vol.8, pp.10, 2018, https://doi.org/10.3390/app8101713
  6. Strength of compressed concrete filled steel tube elements of circular and square cross- section vol.451, pp.None, 2012, https://doi.org/10.1088/1757-899x/451/1/012053
  7. Local buckling of rectangular steel tubes filled with concrete vol.31, pp.2, 2012, https://doi.org/10.12989/scs.2019.31.2.201