참고문헌
- Atanackovic, T. M. and Stankovic B. (2004), "Stability of an elastic rod on a fractional derivative type of foundation", J. Sound Vib., 277(1-2), 149-161. https://doi.org/10.1016/j.jsv.2003.08.050
- Bagley, R. L. and Torvik, P. J. (1983), "Fractional calculus-a different approach to the analysis of viscoelastically damped structures", Am. Inst. Aeronaut. Astronaut. J., 21(5), 741-748. https://doi.org/10.2514/3.8142
- Bagley, R. L. and Torvik, P. J. (1986), "On the fractional calculus model of viscoelastic behavior", J. Rheol., 30(1), 133-155. https://doi.org/10.1122/1.549887
- Bjerrum, L. (1967), "Engineering geology of Norwegian normally-consolidated marine clays as related to settlement of buildings", Geotechnique, 17(2), 81-118.
- Christie, I. F. (1964), "A re-appraisal of Merchant's contribution to the theory of consolidation", Geotechnique, 14(4), 309-320. https://doi.org/10.1680/geot.1964.14.4.309
- Dikmen, U. (2005), "Modeling of seismic wave attenuation in soil structures using fractional derivative scheme", J. Balkan Geophys. Soc., 8(4), 175-188.
- Gemant, A. (1936), "A method of analyzing experimental results obtained from elasto-viscous bodies", J. Appl. Phys., 7, 311-317.
- Justo, J. L. and Durand, P. (2000), "Settlement-time behaviour of granular embankments", Int. J. Numer. Anal. Meth. Geomech., 24(3), 281-303. https://doi.org/10.1002/(SICI)1096-9853(200003)24:3<281::AID-NAG66>3.0.CO;2-S
- Kaliakin, V. N. and Dafalias, Y. F. (1990), "Theoretical aspects of the elastoplastic-viscoplastic bounding surface model for cohesive soils", Soil Found., 30(3), 11-24. https://doi.org/10.3208/sandf1972.30.3_11
- Li, G. G., Zhu, Z. Y. and Cheng, C. J. (2001), "Dynamical stability of viscoelastic column with fractional derivative constitutive relation", Appl. Math. Mech. -Engl. Ed., 22(3), 294-303.
- Liu, L. C., Yan, Q. F. and Sun, H. Z. (2006), "Study on model of rheological property of soft clay", Rock Soil Mech., 27(S1), 214-217. (in Chinese)
- Miller, K. S. and Ross, B. (1993), An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York .
- Padovan, J. (1987), "Computational algorithms for FE formulations involving fractional operators", Comput. Mech., 2(4), 271-287. https://doi.org/10.1007/BF00296422
- Paola, M. Di., Marino, F. and Zingales M. (2009), "A generalized model of elastic foundation based on long-range interactions: Integral and fractional model", Int. J. Solids Struct., 46(17), 3124-3137. https://doi.org/10.1016/j.ijsolstr.2009.03.024
- Rossikhin, Y. A. and Shitikova M. V. (2010), "Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results", Appl. Mech. Rev., 63(1), 010801, 1-52. https://doi.org/10.1115/1.4000563
- Timoshenko, S. P. and Goodier, J. N. (1970), Theory of Elasticity, McGraw-Hill, New York.
- Welch, S. W. J., Rorrer, R. A. L. and Ronald, G. D. Jr. (1999), "Application of time-based fractional calculus methods to viscoelastic creep and stress relaxation of materials", Mech. Time-Depend. Mater., 3(3), 279-303. https://doi.org/10.1023/A:1009834317545
- Yin, J. H. and Graham, J. (1994), "Equivalent times and one-dimensional elastic viscoplastic modelling of time-dependent stress-strain behaviour of clays", Can. Geotech. J., 31(1), 42-52. https://doi.org/10.1139/t94-005
- Zhang, W. and Shimizu, N. (1998), "Numerical algorithm for dynamic problems involving fractional operators", J. Soc. Mech. Eng. Int. J. Ser. C., 41(3), 364-370.
- Zhu, H. H., Liu, L. C. and Ye, X. W. (2011), "Response of a loaded rectangular plate on fractional derivative viscoelastic foundation", J. Basic Sci. Eng., 19(2), 271-278. (in Chinese)
피인용 문헌
- Fractional modeling of Pasternak-type viscoelastic foundation vol.21, pp.1, 2017, https://doi.org/10.1007/s11043-016-9321-0
- A new analytical model to determine dynamic displacement of foundations adjacent to slope vol.6, pp.6, 2014, https://doi.org/10.12989/gae.2014.6.6.561
- Theoretical investigation of interaction between a rectangular plate and fractional viscoelastic foundation vol.6, pp.4, 2014, https://doi.org/10.1016/j.jrmge.2014.04.007
- Assessing composition and structure of soft biphasic media from Kelvin–Voigt fractional derivative model parameters vol.28, pp.3, 2017, https://doi.org/10.1088/1361-6501/aa5531
- Blind Source Separation Model of Earth-Rock Junctions in Dike Engineering Based on Distributed Optical Fiber Sensing Technology vol.2015, 2015, https://doi.org/10.1155/2015/281538
- Prediction of one-dimensional compression behavior of Nansha clay using fractional derivatives vol.35, pp.5, 2017, https://doi.org/10.1080/1064119X.2016.1217958
- Short note: Method of Dimensionality Reduction for compressible viscoelastic media. I. Frictionless normal contact of a Kelvin-Voigt solid vol.98, pp.2, 2018, https://doi.org/10.1002/zamm.201700128
- Limit analysis of supporting pressure in tunnels with regard to surface settlement vol.22, pp.1, 2015, https://doi.org/10.1007/s11771-015-2522-x
- A non-linear thermo-viscoelastic rheological model based on fractional derivatives for high temperature creep in concrete vol.55, 2018, https://doi.org/10.1016/j.apm.2017.11.028
- Bending of a rectangular plate resting on a fractionalized Zener foundation vol.52, pp.6, 2014, https://doi.org/10.12989/sem.2014.52.6.1069
- A long term evaluation of circular mat foundations on clay deposits using fractional derivatives vol.94, 2018, https://doi.org/10.1016/j.compgeo.2017.08.018
- Time-Dependent Settlement of Pile Foundations Using Five-Parameter Viscoelastic Soil Models vol.18, pp.5, 2018, https://doi.org/10.1061/(ASCE)GM.1943-5622.0001122
- The fractional derivative Kelvin–Voigt model of viscoelasticity with and without volumetric relaxation vol.991, pp.1742-6596, 2018, https://doi.org/10.1088/1742-6596/991/1/012069
- Fractional calculus-based compression modeling of soft clay vol.2, pp.10, 2012, https://doi.org/10.3208/jgssp.chn-54
- Material property analytical relations for the case of an AFM probe tapping a viscoelastic surface containing multiple characteristic times vol.8, pp.None, 2012, https://doi.org/10.3762/bjnano.8.223
- Dynamic Mechanical Properties of Soil Based on Fractional-Order Differential Theory vol.55, pp.6, 2019, https://doi.org/10.1007/s11204-019-09550-5
- Determination of Viscoelastic Properties of Soil and Prediction of Static and Dynamic Response vol.19, pp.7, 2012, https://doi.org/10.1061/(asce)gm.1943-5622.0001456
- Long-Term Deformation Analysis for a Vertical Concentrated Force Acting in the Interior of Fractional Derivative Viscoelastic Soils vol.20, pp.5, 2012, https://doi.org/10.1061/(asce)gm.1943-5622.0001649
- On the transient response of plates on fractionally damped viscoelastic foundation vol.39, pp.4, 2012, https://doi.org/10.1007/s40314-020-01285-6
- Theoretical and Numerical Analysis of Soil-Pipe Pile Horizontal Vibration Based on the Fractional Derivative Viscoelastic Model vol.2021, pp.None, 2012, https://doi.org/10.1155/2021/4767892
- An existence result for the fractional Kelvin-Voigt’s model on time-dependent cracked domains vol.21, pp.4, 2012, https://doi.org/10.1007/s00028-021-00713-2