DOI QR코드

DOI QR Code

Bioavailability of slow-desorbable naphthalene in a biological air sparging system

  • Li, Guang-Chun (Department of Agricultural Resources and Environment, Agricultural College of Yanbian University) ;
  • Chung, Seon-Yong (Department of Environmental Engineering, Chonnam National University) ;
  • Park, Jeong-Hun (Department of Environmental Engineering, Chonnam National University)
  • Received : 2012.07.04
  • Accepted : 2012.09.18
  • Published : 2012.09.25

Abstract

The bioavailability of sorbed organic contaminants is one of the most important factors used to determine their fate in the environment. This study was conducted to evaluate the bioavailability of slow-desorbable naphthalene in soils. An air sparging system was utilized to remove dissolved (or desorbed) naphthalene continuously and to limit the bacterial utilization of dissolved naphthalene. A biological air sparging system (air sparging system with bacteria) was developed to evaluate the bioavailability of the slow-desorption fraction in soils. Three different strains (Pseudomonas putida G7, Pseudomonas sp. CZ6 and Burkholderia sp. KM1) and two soils were used. Slow-desorbable naphthalene continuously decreased under air sparging; however, a greater decrease was observed in response to the biological air sparging system. Enhanced bioavailability was not observed in the Jangseong soil. Overall, the results of this study suggests that the removal rate of slow-desorbable contaminants may be enhanced by inoculation of degrading bacteria into an air sparging system during the remediation of contaminated soils. However, the enhanced bioavailability was found to depend more on the soil properties than the bacterial characteristics.

Keywords

References

  1. Bosma, T.N.P., Middeldorp, P.J.M., Schraa, G. and Zehnder, A.J.B. (1996), "Mass transfer limitation of biotransformation: Quantifying bioavailability", Environ. Sci. Technol., 31(1), 248-252.
  2. Calvillo, Y.M. and Alexander, M. (1996), "Mechanism of microbial utilization of biphenyl sorbed to polyacrylic beads", Appl. Microbiol. Biot., 45(3), 383-390. https://doi.org/10.1007/s002530050700
  3. Crocker, F.H., Guerin, W.F. and Boyd, S.A. (1995), "Bioavailability of naphthalene sorbed to cationic surfactantmodified smectite clay", Environ. Sci. Technol., 29(12), 2953-2958. https://doi.org/10.1021/es00012a010
  4. Dudal, Y., Jacobson, A.R., Samson, R. and Deschenes, L. (2004), "Modelling the dynamics of pentachlorophenol bioavailability in column experiments", Water Res., 38(14-15), 3147-3154. https://doi.org/10.1016/j.watres.2004.04.025
  5. Garcia-Junco, M., Gomez-Lahoz, C., Niqui-Arroyo, J.L. and Ortega-Calvo, J.J. (2003), "Biosurfactant- and biodegradation-enhanced partitioning of polycyclic aromatic hydrocarbons from nonaqueous-phase liquids", Environ. Sci. Technol., 37(13), 2988-2996. https://doi.org/10.1021/es020197q
  6. Guerin, W.F. and Boyd, S.A. (1992), "Differential bioavailability of soil-sorbed naphthalene to two bacterial species", Appl. Environ. Microbiol., 58(4), 1142-1152.
  7. Guerin, W.F. and Boyd, S.A. (1993), "Bioavailability of sorbed naphthalene to Bacteria: Influence of contaminant aging and soil organic carbon content", Sorption and Degradation of Pesticides and Organic Chemicals in Soil. SSSA Special Publication, 32, 197-208.
  8. Harms, H. and Bosma, T.N.P. (1997), "Mass transfer limitation of microbial growth and pollutant degradation", J. Ind. Microbiol. Biot., 18(2-3), 97-105. https://doi.org/10.1038/sj.jim.2900259
  9. Harwood, C.S., Nichols, N.N., Kim, M.K., Ditty, J.L. and Parales, R.E. (1994), "Identification of the pcaRKF gene cluster from Pseudomonas putida: Involvement in chemotaxis, biodegradation, and transport of 4- hydroxybenzoate", J Bacteriol., 176(21), 6479-6488. https://doi.org/10.1128/jb.176.21.6479-6488.1994
  10. Heimbrook, M.E., Wang, W.L. and Campbell, G. (1989), "Staining bacterial flagella easily", J. Clin. Microbiol., 27(11), 2612-2615.
  11. Herman, D.C., Lenhard, R.J. and Miller, R.M. (1997), "Formation and removal of hydrocarbon residual in porous media: Effects of attached bacteria and biosurfactants", Environ. Sci. Technol., 31(5), 1290-1294. https://doi.org/10.1021/es960441b
  12. Huysman, F. and Verstraete, W. (1993), "Water-facilitated transport of bacteria in unsaturated soil columns: Influence of cell surface hydrophobicity and soil properties", Soil Biol. Biochem., 25(1), 83-90. https://doi.org/10.1016/0038-0717(93)90245-7
  13. Hwang, S. and Cutright, T.J. (2004), "Preliminary evaluation of PAH sorptive changes in soil by Soxhlet extraction", Environ. Int., 30(2), 151-158. https://doi.org/10.1016/S0160-4120(03)00158-2
  14. Kim, M., Choi, K.K., Go, M.J. and Park, J.H. (2007), "PAHs degrading bacterium separation and identification for biological treatment", Kor. Soc. Soil Groundwater Environ., 12(6), 70-77.
  15. Law, A.M.J. and Aitken, M.D. (2003), "Bacterial chemotaxis to naphthalene desorbing from a nonaqueous liquid", Appl. Environ. Microbiol., 69(10), 5968-5973. https://doi.org/10.1128/AEM.69.10.5968-5973.2003
  16. Leglize, P., Alain, S., Jacques, B. and Corinne, L. (2008), "Adsorption of phenanthrene on activated carbon increases mineralization rate by specific bacteria", J. Hazard. Mater., 151(2-3), 339-347. https://doi.org/10.1016/j.jhazmat.2007.05.089
  17. Li, G.C., Chung, S.Y. and Park, J.H. (2009), "Effect of biofilm formation on soil sorbed naphthalene degradation", Kor. Soc. Soil Groundwater Environ., 14(6), 45-52.
  18. Ma, C.W., Wu, Y.Q., Sun, C.X. and Lee, L. (2007), "Adsorption characteristics of perchloroethylene in natural sandy materials with low organic carbon content", Environ. Geol., 52(8), 1511-1519. https://doi.org/10.1007/s00254-006-0595-4
  19. Mehmannavaz, R., Prasher, S.O. and Ahmad, D. (2001), "Cell surface properties of rhizobial strains isolated from soils contaminated with hydrocarbons: hydrophobicity and adhesion to sandy soil", Process Biochem., 36(7), 683-688. https://doi.org/10.1016/S0032-9592(00)00266-1
  20. Oberbremer, A., Müller-Hurtig, R. and Wagner, F. (1990), "Effect of the addition of microbial surfactants on hydrocarbon degradation in a soil population in a stirred reactor", Appl. Microbiol. Biot., 32(4), 485-489. https://doi.org/10.1007/BF00903788
  21. Oleszczuk, P. (2009), "Application of three methods used for the evaluation of polycyclic aromatic hydrocarbons (PAHs) bioaccessibility for sewage sludge composting", Bioresource Technol., 100(1), 413-420. https://doi.org/10.1016/j.biortech.2008.05.039
  22. Ortega-Calvo, J.J. and Saiz-Jimenez, C. (1998), "Effect of humic fractions and clay on biodegradation of phenanthrene by a Pseudomonas fluorescens strain isolated from soil", Appl. Environ. Microbiol., 64(8), 3123-3126.
  23. Park, J.H., Feng, Y., Ji, P., Voice, T.C. and Boyd, S.A. (2003), "Bioavailability assessment of soil-sorbed atrazine", Appl. Environ. Microbiol., 69(6), 3288-3298. https://doi.org/10.1128/AEM.69.6.3288-3298.2003
  24. Park, J.H., Zhao, X. and Voice, T.C. (2001), "Biodegradation of non-desorbable naphthalene in soils", Environ. Sci. Technol., 35(13), 2734-2740. https://doi.org/10.1021/es0019326
  25. Park, J.H., Zhao, X. and Voice, T.C. (2002), "Development of a kinetic basis for bioavailability of sorbed naphthalene in soil slurries", Water Res., 36(6), 1620-1628. https://doi.org/10.1016/S0043-1354(01)00360-8
  26. Pedit, J.A., Marx, R.B., Miller, C.T. and Aitken, M.D. (2002), "Quantitative analysis of experiments on bacterial chemotaxis to naphthalene", Biotechnol. Bioeng., 78(6), 626-634. https://doi.org/10.1002/bit.10244
  27. Poeton, T.S., Stensel, H.D. and Strand, S.E. (1999), "Biodegradation of polyaromatic hydrocarbons by marine bacteria: Effect of solid phase on degradation kinetics", Water Res., 33(3), 868-880. https://doi.org/10.1016/S0043-1354(98)00232-2
  28. Sajjad, M. (2005), "Evaluation of bacterial strategies to degrade non-desorbable naphthalene in natural and artificial sorbents", Ph.D. Dissertation, Michigan State University, Michigan.
  29. Scheibenbogen, K., Zytner, R.G., Lee, H. and Trevors, J.T. (1994), "Enhanced removal of selected hydrocarbons from soil by Pseudomonas aeruginosa UG2 biosurfactants and some chemical surfactants", J. Chem. Technol. Biot., 59(1), 53-59. https://doi.org/10.1002/jctb.280590109
  30. Tang, W.C., White, J.C. and Alexander, M. (1998), "Utilization of sorbed compounds by microorganisms specifically isolated for that purpose", Appl. Microbiol. Biotechnol., 49(1), 117-121. https://doi.org/10.1007/s002530051147
  31. Xia, X.H., Li, Y.R., Zhou, Z.I. and Feng, C.L. (2010), "Bioavailability of adsorbed phenanthrene by black carbon and multi-walled carbon nanotubes to Agrobacterium", Chemosphere, 78(11), 1329-1336. https://doi.org/10.1016/j.chemosphere.2010.01.007
  32. Xia, X.H., Yu, H., Yang, Z.F. and Huang, G.H. (2006), "Biodegradation of polycyclic aromatic hydrocarbons in the natural waters of the Yellow River: Effects of high sediment content on biodegradation", Chemosphere, 65(3), 457-466. https://doi.org/10.1016/j.chemosphere.2006.01.075