DOI QR코드

DOI QR Code

Enhanced Degradation of TNT and RDX by Bio-reduced Iron Bearing Soil Minerals

  • Cho, Changhyun (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Bae, Sungjun (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Woojin (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2012.03.15
  • Accepted : 2012.03.26
  • Published : 2012.03.25

Abstract

We demonstrated that reductive degradation of 2,4,6-Trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (Royal Demolition Explosive, RDX) can be enhanced by bio-reduced iron-bearing soil minerals (IBSMs) using Shewanella putrefaciens CN32 (CN32). The degradation kinetic rate constant of TNT by bio-reduced magnetite was the highest (0.0039 $h^{-1}$), followed by green rust (0.0022 $h^{-1}$), goethite (0.0017 $h^{-1}$), lepidocrocite (0.0016 $h^{-1}$), and hematite (0.0006 $h^{-1}$). The highest rate constant was obtained by bio-reduced lepidocrocite (0.1811 $h^{-1}$) during RDX degradation, followed by magnetite (0.1700 $h^{-1}$), green rust (0.0757 $h^{-1}$), hematite (0.0495 $h^{-1}$), and goethite (0.0394 $h^{-1}$). Significant increase of Fe(II) was observed during the reductive degradation of TNT and RDX by bio-reduced IBSMs. X-ray diffraction and electron microscope analyses were conducted for identification of degradation mechanism of TNT and RDX in this study. 4-amino-dinitrotoluene were detected as products during TNT degradation, while Hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine, Hexahydro-1,3-dinitroso-5-nitro-1,3,5triazine, and Hexahydro-1,3,5-trinitroso-1,3,5-triazine were observed during RDX degradation.

Keywords

Acknowledgement

Grant : The GAIA Project

Supported by : Ministry of Environment, National Research Foundation

References

  1. Adrian, N.R., Arnett, C.M. and Hickey, R.F. (2003), "Stimulating the anaerobic biodegradation of explosives by the addition of hydrogen or electron donors that produce hydrogen", Water Res., 37(14), 3499-3507. https://doi.org/10.1016/S0043-1354(03)00240-9
  2. Adrian, N.R. and Arnett, C.M. (2004), "Anaerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Acetobacterium malicum strain HAAP-1 isolated from a methanogenic mixed culture", Curr. Microbiol., 48(5), 332-340. https://doi.org/10.1007/s00284-003-4156-8
  3. Boopathy, R. and Kulpa, C.F. (1992), "Trinitrotoluene (TNT) as a sole nitrogen source for a sulfate-reducing bacterium Desulfovibrio sp. (B Strain) usolated from an anaerobic digester", Curr. Microbiol., 25(4), 235-241. https://doi.org/10.1007/BF01570724
  4. Boopathy, R. and Manning, J.F. (2000), "Laboratory treatability study on hexahydro-1,3,5-trinitro-1,3,5-triazine-(RDX-) contaminated soil from the Iowa army ammunition plant", Water Environ. Res., 72(2), 238-242. https://doi.org/10.2175/106143000X137400
  5. Borch, T., Inskeep, W.P., Harwood, J.A. and Gerlach, R. (2005), "Impact of ferrihydrite and anthraquinone-2,6-disulfonate on the reductive transformation of 2,4,6-trinitrotoluene by a gram positive fermenting bacterium", Environ. Sci. Technol., 39(18), 7126-7133. https://doi.org/10.1021/es0504441
  6. Bae, B. (2006), "Reduction of high explosives (HMX, RDX, and TNT) using micro- and nano- size zero valent iron : Comparison of kinetic constants and intermediates behavior", J. KoSSGE, 11(6), 83-91.
  7. Bae, S. and Lee, W. (2010), "Inhibition of nZVI reactivity by magnetite during the reductive degradation of 1,1,1-TCA in nZVI/magnetite suspension", Appl. Catal. B: Environ., 96(1-2), 10-17. https://doi.org/10.1016/j.apcatb.2010.01.028
  8. Bae, S. and Lee, W. (2012), "Enhanced reductive degradation of carbon tetrachloride by biogenic vivianite and Fe(II)", Geochim. Cosmochim. Ac., doi: 10.1016/j.gca.2012.02.023
  9. Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Dong, H., Onstott, T.C., Jinman, N.W. and Li, S. (1998), "Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium", Geochim. Cosmochim. Ac., 62(19-20), 3239-3257. https://doi.org/10.1016/S0016-7037(98)00243-9
  10. Gregory, K.B., Larese-Casanova, P., Parkin, G.F. and Scherer, M.M. (2004), "Abiotic transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine by Fe(II) bound to magnetite", Environ. Sci. Technol., 38(5), 1408-1414. https://doi.org/10.1021/es034588w
  11. Hundal, L.S., Shea, P.J., Comfort, S.D., Powers, W.L. and Singh, J. (1997a), "Long-term TNT sorption and boundresidue formation in soil", J. Environ. Qual., 26(3), 894-904.
  12. Hundal, L.S., Singh, J., Bier, E.L., Shea, P.J., Comport, S.D. and Powers, W.L. (1997b), "Removal of TNT and RDX from water and soil using iron metal", Environ. Pollut., 97(1-2), 55-64. https://doi.org/10.1016/S0269-7491(97)00081-X
  13. Huang, S., Lindahl, P.A., Wang, C., Bennett, G.N., Rudolph, F.B. and Hughes, J.B. (2000), "2,4,6-Trinitrotoluene reduction by carbon monoxide dehydrogenase from Clostridium thermoaceticum", Appl. Environ. Microb., 66(4), 1474-1478. https://doi.org/10.1128/AEM.66.4.1474-1478.2000
  14. Kaplan, D.L. and Kaplan, A.M. (1982), "2,4,6-trinitrotoluene-surfactant complexes: Decomposition, mutagenicity, and soil leaching studies", Environ. Sci. Technol., 16(9), 566-571. https://doi.org/10.1021/es00103a006
  15. Kwon, M.J. and Finneran, K.T. (2006), "Microbially mediated biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine by extracelluar electron shuttling compounds", Appl. Environ. Microb., 72(9), 5933-5941. https://doi.org/10.1128/AEM.00660-06
  16. Kwon, M.J. and Finneran, K.T. (2008), "Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) biodegradation kinetics amongst several Fe(III)-reducing genera", Soil Sediment Contam. 17(2), 189-203. https://doi.org/10.1080/15320380701873132
  17. Legrand, L., Abdelmoula, M., Gehin, A., Chausse, A. and Genin, J.M.R. (2001), "Electrochemical formation of a new Fe(II)-Fe(III) hydroxy-carbonate green rust: characterisation and morphology", Electrochim. Acta, 46(12), 1815-1822. https://doi.org/10.1016/S0013-4686(00)00728-3
  18. Lee, W. and Batchelor, B. (2002a), "Reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 1. Pyrite and magnetite", Environ. Sci. Technol., 36(23), 5147-5154. https://doi.org/10.1021/es025836b
  19. Lee, W. and Batchelor, B. (2002b), "Reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 2. Green rust", Environ. Sci. Technol., 36(24), 5348-5354. https://doi.org/10.1021/es0258374
  20. Larese-Casanova, P. and Scherer, M.M. (2008), "Abiotic transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by green rusts", Environ. Sci. Technol., 42(11), 3975-3981. https://doi.org/10.1021/es702390b
  21. Lotufo, G., Sunahara, G.I., Hawari, J. and Kuperman, R.G. (2009), Ecotoxicology of Explosives, CRC Press, Boca Raton, FL.
  22. Meyers, S.K., Deng, S., Basta, N.T., Clarkson, W.W. and Wilber, G.G. (2007), "Long-term explosive contamination in soil: Effects on soil microbial community and bioremediation", Soil Sediment Contam., 16(1), 61-77. https://doi.org/10.1080/15320380601077859
  23. Maithreepala, R.A. and Doong, R.A. (2009), "Transformation of carbon tetrachloride by biogenic iron species in the presence of Geobacter sulfurreducens and electron shuttles", J. Hazard. Mater., 164(1), 337-344. https://doi.org/10.1016/j.jhazmat.2008.08.007
  24. Naja, J., Halasz, A., Thiboutot, S., Ampleman, G and Hawai, J. (2008), "Degradation of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using zerovalent iron nanoparticles", Environ. Sci. Technol., 42(12), 4364-4370. https://doi.org/10.1021/es7028153
  25. Oh, S.Y., Chiu, P.C. and Cha, D.K. (2008), "Reductive transformation of 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and nitroglycerin by pyrite and magnetite", J. Hazard. Mater., 158(2-3), 652-665. https://doi.org/10.1016/j.jhazmat.2008.01.078
  26. O'Loughlin, E.J. (2008), "Effects of electron transfer mediators on the bioreduction of lepidocrocite (gamma-FeOOH) by Shewanella putrefaciens CN32", Environ. Sci. Technol., 42(18), 6876-6882. https://doi.org/10.1021/es800686d
  27. Perez-Gonzalez, T., Jimenez-Lopez, C., Neal, A.L., Rull-perez, F., Rodriquez-Navarro, A., Fernandez-Vivas, A. and Ianez-Pareja E. (2010), "Magnetite biomineralization induced by Shewanella oneidensis", Geochim. Cosmochim. Acta, 74(3), 967-979. https://doi.org/10.1016/j.gca.2009.10.035
  28. Stookey, L.L. (1970), "Ferrozine-A new spectrophotometric reagent for iron" Anal. Chem., 42(7), 779-782. https://doi.org/10.1021/ac60289a016
  29. Schmelling, D.C., Gray, K.A. and Kamat, P.V. (1996), "Role of reduction in the photocatalytic degradation of TNT", Environ. Sci. Technol., 30(8), 2547-2555. https://doi.org/10.1021/es950896l
  30. Srinivasan, R., Lin, R., Spicer, R.L. and Davis, B.H. (1996), "Structural features in the formation of the green rust intermediate and ),-FeOOH", Colloid. Surface. A, 113(1-2), 97-105. https://doi.org/10.1016/0927-7757(96)03594-7
  31. Spain, J.C., Hughes, J.B. and Knackmuss, H.J. (2000), Biodegradation of Nitroaromatic Compounds and Explosives, Lewis Publishers, New York, NY.
  32. Sherburne, L.A., Shrout, J.D. and Alvarez, P.J.J. (2005), "Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation by Acetobacterium paludosum", Biodegradation, 16(6), 539-547. https://doi.org/10.1007/s10532-004-6945-6
  33. Thompson, K.T., Crocker, F.H. and Fredrickson, H.L. (2005), "Mineralization of the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia and Williamsia spp", Appl. Environ. Microb., 71(12), 8265-8272. https://doi.org/10.1128/AEM.71.12.8265-8272.2005
  34. Yinon, J. (1990), Toxicity and Metabolism of Explosives, CRC Press, Boca Raton, FL.
  35. Zachara, J.M., Fredrickson, J.K., Li, S.W., Kennedy, D.W., Smith, S.C. and Gassman, P.L. (1998), "Bacterial reduction of crystalline Fe(II) oxides in single phase suspensions and subsurface materials", Am. Mineral., 83(11-12), 1426-1443. https://doi.org/10.2138/am-1998-11-1232

Cited by

  1. Application of 13C and 15N stable isotope probing to characterize RDX degrading microbial communities under different electron-accepting conditions vol.297, 2015, https://doi.org/10.1016/j.jhazmat.2015.04.059
  2. Formation of surface mediated iron colloids during U(VI) and nZVI interaction vol.2, pp.3, 2013, https://doi.org/10.12989/aer.2013.2.3.167
  3. ECG SIGNALS NOISE REMOVAL: SELECTION AND OPTIMIZATION OF THE BEST ADAPTIVE FILTERING ALGORITHM BASED ON VARIOUS ALGORITHMS COMPARISON vol.27, pp.04, 2015, https://doi.org/10.4015/S1016237215500386
  4. Estimation of the local heat transfer coefficient in coiled tubes vol.27, pp.3, 2017, https://doi.org/10.1108/HFF-03-2016-0097
  5. Removal studies of Cd(II) and explosive compounds using buffalo weed biochar-alginate beads vol.26, 2015, https://doi.org/10.1016/j.jiec.2014.11.034
  6. Characterization of Klebsiella granulomatis pathogenic to silkworm, Bombyx mori L. vol.5, pp.4, 2015, https://doi.org/10.1007/s13205-014-0255-4
  7. Influencing factors on sorption of TNT and RDX using rice husk biochar vol.32, 2015, https://doi.org/10.1016/j.jiec.2015.08.012
  8. Evaluation of Nanoscale Zero-valent Iron for Reductive Degradation of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX): Batch and Column Scale Studies vol.20, pp.6, 2015, https://doi.org/10.7857/JSGE.2015.20.6.117
  9. Reduction of RDX in Ground Water by Bio-Regenerated Iron Mineral: Results of Field Verification Test at a Miliary Shooting Range vol.20, pp.6, 2015, https://doi.org/10.7857/JSGE.2015.20.6.062
  10. Biodegradation and mineralization of isotopically labeled TNT and RDX in anaerobic marine sediments vol.36, pp.5, 2017, https://doi.org/10.1002/etc.3666
  11. A Study on the Degradation Properties of Aqueous Trinitrotoluene by Palladium Catalyst and Formic Acid vol.31, pp.5, 2015, https://doi.org/10.15681/KSWE.2015.31.5.468
  12. Riboflavin-mediated RDX transformation in the presence of Shewanella putrefaciens CN32 and lepidocrocite vol.274, 2014, https://doi.org/10.1016/j.jhazmat.2014.04.002
  13. A Conceptual Model of Fate and Transport Processes for RDX Deposited to Surface Soils of North American Active Demolition Sites vol.46, pp.6, 2017, https://doi.org/10.2134/jeq2017.02.0069
  14. Ultrasonic spot welding of aluminum to copper: a review vol.107, pp.1, 2012, https://doi.org/10.1007/s00170-020-04997-5
  15. Research on Regenerating Activated Carbon in 2,4,6‐Trinitrotoluene (TNT) Explosives Manufacturing Industry by Microwave Radiation and Ionized Nitrogen vol.46, pp.1, 2021, https://doi.org/10.1002/prep.202000166
  16. Clothianidin decomposition in Missouri wetland soils vol.50, pp.1, 2021, https://doi.org/10.1002/jeq2.20175
  17. The Effect of Soil Moisture on the Ability to Detect TNT Pairs from the Sand Layer in Order to Prevent Environmental Pollution and Groundwater vol.26, pp.13, 2012, https://doi.org/10.3390/molecules26133908