DOI QR코드

DOI QR Code

Regulation of Ethylene Biosynthesis in Phytochrome Mutants of the Arabidopsis Root

Arabidopsis 피토크롬 돌연변이체에서 ethylene 생합성 조절 작용

  • Park, Ji-Hye (Department of Biological Sciences, Andong National University) ;
  • Kim, Soon-Young (Department of Biological Sciences, Andong National University)
  • Received : 2012.03.22
  • Accepted : 2012.04.06
  • Published : 2012.04.30

Abstract

In order to investigate the effect of phytochromes on the regulation of ethylene biosynthesis, we measured the ethylene production and the activities of enzymes involved in ethylene biosynthesis using phytochrome mutants such as $phyA$, $phyB$, and $phyAB$ of Arabidopsis. The ethylene production was decreased in mutants grown in white light. In particular, double mutants showed a 37% decrease compared to the wild type in ethylene production. When Arabidopsis roots were grown in the dark, mutants did not show a decrease in ethylene production; however, production was significantly decreased in the double mutant grown in red light. Only $phyB$ did not show the decrease in the ethylene production in far-red light. Unlike the ACO activities, the ACS activities of mutants showed the same pattern as the ethylene production under several light conditions. The results of ACS activities confirmed the expression of the ACS gene by RT-PCR analysis. The decrease of ethylene production in mutants was due to the lower activity of ACC synthase, which converts the S-adenosyl-L-methionine (AdoMet) to 1-aminocyclopropane-1-carboxylic acid (ACC), the precursor of ethylene. These results suggested that both phytochrome A and B play an important role in the regulation of ethylene biosynthesis in Arabidopsis roots in the conversion step of AdoMet to ACC, which is regulated by ACS.

식물생장과 발달에 중요한 역할을 하는 phytochrome이 ethylene 생합성에 미치는 영향을 조사하기 위하여 여러 빛 조건에서 키운 phyA, phyB, phyAB에서 ethylene 생합성과 생합성에 관여하는 enzyme activity를 측정하였다. White light에서 키웠을 때 모든 mutant에서 ethylene 생합성이 감소되었다. 특히 double mutant에서는 wild type과 비교하여 37%가 감소하였다. Dark에서 키웠을 때에는 wild type만 감소하였고, mutant에서는 감소효과가 나타나지 않았다. Red light에서 키웠을 때 double mutant에서 급격한 감소가 일어났다. Far-red light 에서 키웠을 때는 phyB만 감소가 일어나지 않았다. Ethylene 생합성에 관여하는 enzyme인 ACO 활성 패턴과는 달리ACS 활성 패턴은 ethylene 생성 패턴과 유사하게 나타났다. 이 결과를 바탕으로 ethylene 생합성에는 phytochrome A와 B 모두 중요한 작용을 하며 특히 $P_r$ 형태의 phytochrome이 ethylene 생성량을 조절한다는 것을 제시한다. 또한 phytochrome은 ethylene 생합성 단계에서 AdoMet가 ACC로 전환되는 단계에서 조절하는 것을 제시한다.

Keywords

References

  1. Abeles, F. B., Morgan, P. W. and Saltveit Jr, M. E. 1992. Ethylene in Plant Biology. pp. 37-55, 2nd eds., Academic Press, San Diego, California.
  2. Bleecker, A. B. and Kende, H. 2000. Ethylene: a gaseous signal molecule in plants. Ann. Rev. Cell. Dev. Biol. 16, 1-18. https://doi.org/10.1146/annurev.cellbio.16.1.1
  3. Chen, M., Chory, J. and Fankhauser, C. 2004. Light signal transduction in higher plants. Ann. Rev. Genet. 38, 87-117. https://doi.org/10.1146/annurev.genet.38.072902.092259
  4. Clack, T., Mathews, S. and Sharrock, R. A. 1994. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Mol. Biol. 25, 413-427. https://doi.org/10.1007/BF00043870
  5. Foo, E., Ross, J. J., Davies, N. W., Reid, J. B. and Weller, J. L. 2006. A role for ethylene in the phytochrome-mediated control of vegetative development. Plant J. 46, 911-921. https://doi.org/10.1111/j.1365-313X.2006.02754.x
  6. Franklin, K. A., Davis, S. J., Stoddart, W. M., Viestra, R. D. and Whitelam, G. C. 2003. Mutant analyses define multiple roles for phytochrome C in Arabidopsis thaliana photomorphogenesis. Plant Cell 15, 1981-1989. https://doi.org/10.1105/tpc.015164
  7. Franklin, K. A. and Whitelam, G. C. 2004. Light signals, phytochromes and cross-talk with other environmental cues. J. Exp. Bot. 55, 271-276.
  8. Hennig, L., Stoddart, W. M., Dieterle, M., Whitelam, G. C. and Schäfer, E. 2002. Phytochrome E controls light-induced germination of Arabidopsis. Plant Physiol. 128, 194-200. https://doi.org/10.1104/pp.010559
  9. Iwamoto, M. and Takano, M. 2011. Phytochrome-regulated EBL1 contributes to ACO1 upregulation in rice. Biotechnol. Lett. 33, 173-178. https://doi.org/10.1007/s10529-010-0405-7
  10. Kiss, J. Z., Mullen, J. L., Correll, M. J. and Hangarter, R. P. 2003. Phytochromes A and B mediate red-light-induced positive phototropism in roots. Plant Physiol. 131, 1411-1417. https://doi.org/10.1104/pp.013847
  11. Lau, O. S. and Deng, X. W. 2010. Plant hormone signaling lightens up: integrators of light and hormones. Curr. Opin. Plant Biol. 13, 571-577. https://doi.org/10.1016/j.pbi.2010.07.001
  12. Monte, E., Alonso, J. M., Ecker, J. R., Zhang, Y., Li, X., Young, J., Austin-Phillips, S. and Quail, P. H. 2003. Isolation and characterization of phyC mutants in Arabidopsis reveals complex cross-talk between phytochrome signalling pathways. Plant Cell 15, 1962-1980. https://doi.org/10.1105/tpc.012971
  13. Neff, M. N., Fankhauser, C. and Chory, J. 2000. Light: indicator of time and place. Genes Dev. 14, 257-271.
  14. Nemhauser, J. L. 2008. Dawning of a new era: photomorphogenesis as an integrated molecular network. Curr. Opin. Plant Biol. 11, 4-8. https://doi.org/10.1016/j.pbi.2007.10.005
  15. Parks, B. M. and Spalding, E. P. 1999. Sequential and coordinated action of phytochromes A and B during Arabidopsis stem growth revealed by kinetic analysis. Proc. Natl. Acad. Sci. USA 96, 14142-14146. https://doi.org/10.1073/pnas.96.24.14142
  16. Peng, H. P., Lin, T. Y., Wang, N. N. and Shih, M. C. 2005. Differential expression of genes encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis during hypoxia. Plant Mol. Biol. 58, 15-25. https://doi.org/10.1007/s11103-005-3573-4
  17. Pierik, R., Cuppens, M. L. C., Voesenek, L. A. C. J. and Visser, E. J. W. 2004. Interaction between ethylene and gibberellins in phytochrome-mediated shade avoidance responses in tobacco. Plant Physiol. 136, 2928-2936. https://doi.org/10.1104/pp.104.045120
  18. Reed, J. W., Nagatani, A., Elich, T. D., Fagan, M. and Chory, J. 1994. Phytochrome A and phytochrome B have overlapping but distinct function in Arabidopsis development. Plant Physiol. 104, 1139-1149.
  19. Ruppel, N. J., Hangarter, R. P. and Kiss, J. Z. 2001. Red-light-induced positive phototropism in Arabidopsis roots. Planta 212, 424-430. https://doi.org/10.1007/s004250000410
  20. Sharrock, R. A. and Clack, T. 2002. Patterns of expression and normalized levels of the five Arabidopsis phytochromes. Plant Physiol. 130, 442-456. https://doi.org/10.1104/pp.005389
  21. Smalle, J. and Van Der Straeten, D. 1997. Ethylene and vegetative development. Physiol. Plant 100, 593-605. https://doi.org/10.1111/j.1399-3054.1997.tb03065.x
  22. Swarup, R., Perry, P., Hagenbeek, D., Van-Der-Straeten, D., Beemster, G. T., Sandberg G., Bhalerao, R., Ljung, K. and Bennett, M. J. 2007. Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19, 2186-2196. https://doi.org/10.1105/tpc.107.052100
  23. Takano, M., Kanegae, H., Shinomura, T., Miyao, A., Hirochika, H. and Furuya, M. 2001. Isolation and characterization of rice phytochrome A mutants. Plant Cell 13, 521-534. https://doi.org/10.1105/tpc.13.3.521
  24. Tsuchisaka, A. and Theologis, A. 2004. Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol. 136, 2982-3000. https://doi.org/10.1104/pp.104.049999
  25. Vandenbussche, F., Vriezen, W. H., Smalle, J., Laarhoven, L. J., Harren, F. J. and Van-Der-Straeten, D. 2003. Ethylene and auxin control the Arabidopsis response to decreased light intensity. Plant Physiol. 133, 517-527. https://doi.org/10.1104/pp.103.022665
  26. Yamagami, T., Tsuchisaka, A., Yamada, K., Haddon, W. F., Harden, L. A. and Theologis, A. 2003. Biochemical diversity among the 1-aminocyclopropane- 1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J. Biol. Chem. 278, 49102-49112. https://doi.org/10.1074/jbc.M308297200