DOI QR코드

DOI QR Code

Effects of Myostatin Prodomains on the Reproduction of Rotifer Brachionus rotundiformis

Myostatin prodomains이 rotifer 생활사에 미치는 영향

  • Jo, Mi-Jin (Department of Marine Molecular Biotechnology, Gangneung-Wonju National University) ;
  • Jin, Hyung-Joo (Department of Marine Molecular Biotechnology, Gangneung-Wonju National University)
  • 조미진 (강릉원주대학교 생명과학대학 해양분자생명공학과) ;
  • 진형주 (강릉원주대학교 생명과학대학 해양분자생명공학과)
  • Received : 2012.02.16
  • Accepted : 2012.04.22
  • Published : 2012.04.30

Abstract

Myostatin (MSTN), a member of the transforming growth factor (TGF)-beta family, is a potent negative regulator of skeletal muscle growth and maintenance. The MSTN prodomain inhibits MSTN biological activity. The rotifer Brachionus rotundiformis is an excellent primary live feed for fish larvae in aquaculture; however, it is not known whether the rotifer expresses MSTN and the MSTN prodomain along with its activity. The objective of this study was to examine the effects of recombinant MSTN prodomains. Individual cultures of the rotifer B. rotundiformis were carried out to determine the effect of recombinant MSTN prodomains (pMALc2x-poMSTNpro and pMALc2x-sMSTNpro) on the pre-reproductive phase, reproductive phase, post-reproductive phase, offspring, lifespan, fecundity, and male ratio. In addition, a population culture of the rotifer was performed to confirm the effects of pMALc2x-poMSTNpro and pMALc2x-sMSTNpro on population growth. The results showed that the rotifer treated with pMALc2x-pMSTNpro had a reduced pre-reproductive phase at higher concentrations (1, 2, and 4 ${\mu}g/ml$) compared to the non-treated control group. Moreover, the pMALc2xsMSTNpro treated rotifer effectively decreased the pre-reproductive phase at a lower concentration (0.25 ${\mu}g/ml$) compared to the pMALc2x-pMSTNpro treated and control group. Interestingly, pMALc2x-poMSTNpro and pMALc2x-sMSTNpro significantly increased the population of $B.$ $rotundiformis$.

Myostatin (MSTN)은 TGF (transforming growth factor)-beta family에 속하며, 골격근 성장의 억제 조절인자로서 여러 포유류에서 MSTN 유전자 돌연변이는 골격근 증가를 유도한다. MSTN prodomain은 MSTN의 생물학적 활성을 저해하는데, MSTN prodomain이 과 발현된 쥐에서 과도한 근육축적이 확인되었다. 로티퍼(rotifer; Brachionus rotundiformis)는 치어기 어류의 양식산업에 있어 주요한 일차적 먹이생물이다. 그러나 로티퍼에서 MSTN 및 MSTN prodomain의 기능과 발현 유무는 알려져 있지 않다. 따라서 본 연구는 재조합 MSTN prodomains이로티퍼에 미치는 영향에 관하여 조사하고자 하였다. 로티퍼 개체배양 실험을 통하여 재조합 MSTN prodomains(pMALc2x-poMSTNpro, pAMLc2x-sMSTNpro)에 의한 로티퍼의 생식 전 단계, 순 생식단계, 생식 후 단계, 산란, 수명, 포란, 수컷 발생률을 확인하였으며, 또한 pMALc2x-poMSTNpro와 pAMLc2x-sMSTNpro이 밀집배양에서 로티퍼의 개체성장에 영향을 미치는지에 대하여 확인하였다. 그 결과 농도가 1, 2, 4 ${\mu}g/ml$에서 pMALc2x-poMSTNpro를 처리한 실험군과 0.25 ${\mu}g/ml$에서 4 ${\mu}g/ml$ 농도까지 pMALc2x-sMSTNpro를 처리한 실험군에서 로티퍼의 생식 전 단계가 아무처리하지 않은 대조군에 비하여 짧아졌다. 밀집배양 실험에 있어 pMALc2x-poMSTNpro와 pMALc2x-sMSTNpro 모두 로티퍼의 개체 수를 증가를 유도하여, 재조합 MSTN prodomains에 의해서 로티퍼의 reprodution에 영향을 주는 것으로 나타났다. 하지만, 재조합 MSTN prodomains이 어떠한 수용체를 이용하여 신호를 전달하는지에 대한 연구는 앞으로 더 진행되어야 하며, 본 연구의 결과는 재조합 MSTN prodomains이 미세조류에서의 기능 및 메커니즘연구에 중요한 기초자료가 될 것으로 사료된다.

Keywords

References

  1. Acosta, J., Morales, R., Morales, A., Alonso, M. and Estrada, M. P. 2007. Pichia pastoris expressing recombinant tilapia growth hormone accelerates the growth of tilapia. Biotechnol. Lett. 29, 1671-1676. https://doi.org/10.1007/s10529-007-9502-7
  2. Alver, M. O. and Hagiwara, A. 2007. An individual-based population model for the prediction of rotifer population dynamics and resting egg production. Hydrobiologia 593, 19-26. https://doi.org/10.1007/s10750-007-9043-z
  3. Amali, A. A., Lin, C. J., Chen, Y. H., Wang, W. L. Gong, H. Y., Lee, C. Y., Ko, Y. L., Lu, J. K., Her, G. M., Chen, T. T. and Wu, J. L. 2004. Up-regulation of muscle-specific transcription factors during embryonic somitogenesis of zebrafish (Danio rerio) by knock-down of myostatin-1. Dev. Dyn. 229, 847-856. https://doi.org/10.1002/dvdy.10454
  4. Clement, P., Wurdak, E. and Amsellem, J. 1983. Behaviour and ultrastructure of sensory organs in rotifers. Hydrobiologia 104, 89-130. https://doi.org/10.1007/BF00045957
  5. Clop, A., Marcq, F., Takeda, H., Pirottin, D., Tordoir, X., Bibe, B., Bouix, J., Caiment, F., Elsen, J. M., Eychenne, F., Larzul, C., Laville, E., Meish, F., Milenkovic, D., Tobin, J., Charlier, C. and Georges, M. 2006. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet. 38, 813-818. https://doi.org/10.1038/ng1810
  6. Gallardo, W. G., Hagiwara, A., Tomita, Y., Soyano, K. and Snell, T. W. 1997. Effect of some vertebrate and invertebrate hormones on the population growth, mictic female production, and body size of the marine rotifer Brachionus plicatilis Muller. Hydrobiologia 358, 113-120. https://doi.org/10.1023/A:1003124205002
  7. Gallardo, W. G., Hagiwara, A., Hara, K., Soyano, K. and Snell, T. W. 2000. GABA, 5-HT and other amino acids in the rotifers Brachionus Plicatilis and B. Rotundiformis. Comp. Biochem. Physiol. 127A, 301-307.
  8. Gallardo, W. G., Hagiwara, A. and Snell, T. W. 2000. Effect of juvenile hormone and serotonin (5 HT) on mixis induction of the rotifer Brachionus plicatilis Muller. J. Exp. Mar. Biol. Ecol. 252, 97-107. https://doi.org/10.1016/S0022-0981(00)00240-9
  9. Gallardo, W. G., Hagiwara, A. and Snell, T. W. 2000. GABA enhances rotifer reproduction of the rotifer Brachionus plicatilis Muller: application to mass culture. Aquacult. Res. 31, 713-718. https://doi.org/10.1046/j.1365-2109.2000.00489.x
  10. Gallardo, W. G., Hagiwara, A. and Snell, T. W. 2001. Use of GABA to enhance rotifer reproduction in enrichment culture. Aquac. Res. 32, 243-246. https://doi.org/10.1046/j.1365-2109.2001.00553.x
  11. Halbach, U., Siebert, M., Westermayer, M. and Wissel, C. 1983. Population ecology of rotifers as a bioassay tool for ecotoxicological tests in aquatic environments. Ecotoxicol. Environ. Saf. 7, 484-513. https://doi.org/10.1016/0147-6513(83)90088-X
  12. Hill, J. J., Davies, M. V., Pearson, A. A., Wang, J. H., Hewick, R. M., Wolfman, N. M. and Qiu, Y. 2002. The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. J. Biol. Chem. 277, 40735-40741. https://doi.org/10.1074/jbc.M206379200
  13. Kambadur, R., Sharma, M., Smith, T. P. and Bass, J. J. 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 7, 910-916.
  14. Kerr, T., Roalson, E. H. and Rodgers, B. D. 2005. Phylogenetic analysis of the myostatin gene sub-family and the differential expression of a novel member in zebrafish. Evol. Dev. 7, 390-400. https://doi.org/10.1111/j.1525-142X.2005.05044.x
  15. Kubanek, J. and Snell, T. W. 2008. Quorum sensing in rotifers, pp. 453-461, In Winans, S. C. and Bassler, B. L. (eds.), Chemical communication among Bacteria, ASM Press, Washington, DC, USA.
  16. Lee, S. B., Kim, Y. S., Oh, M. Y., Jeong, I. H., Seong, K. B. and Jin, H. J. 2010. Improving rainbow trout (Oncorhynchus mykiss) growth by treatment with a fish (Paralichthys olivaceus) myostatin prodomain expressed in soluble forms in E. coli. Aquaculture 302, 270-278. https://doi.org/10.1016/j.aquaculture.2010.02.027
  17. Lee, S. B., Cho, M. J., Kim, J. H., Kim, Y. S. and Jin, H. J. 2011. Production of Bioactive Rockfish (Sebastes schlegeli) Myostatin-1 Prodomain in an Escherichia coli system. Protein J. 30, 52-58. https://doi.org/10.1007/s10930-010-9301-1
  18. Lee, S. J. and McPherron, A. C. 2001. Regulation of myostatin activity and muscle growth. Proc. Natl. Acad. Sci. USA 98, 9306-9311. https://doi.org/10.1073/pnas.151270098
  19. Maccatrozzo, L., Bargelloni, L., Radaelli, G., Mascarello, F. and Patarnello, T. 2001. Characterization of the myostatin gene in the gilthead seabream (Sparus aurata): sequence, genomic structure, and expression pattern. Mar. Biotechnol. 3, 224-230. https://doi.org/10.1007/s101260000064
  20. McPherron, A. C., Lawler, A. M. and Lee, S. J. 1997. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387, 83-90. https://doi.org/10.1038/387083a0
  21. McPherron, A. C. and Lee, S. J. 1997. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. USA 94, 12457-12461. https://doi.org/10.1073/pnas.94.23.12457
  22. Mosher, D. S., Quignon, P., Bustamante, C. D., Sutter, N. B., Mellersh, C. S., Parker, H. G. and Ostrander, E. A. 2007. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet. 3, e79. https://doi.org/10.1371/journal.pgen.0030079
  23. Preston, B. L. and Snell, T. W. 2001. Direct and indirect effects of sublethal toxicant exposure on population dynamics of freshwater rotifers: a modeling approach. Aquat. Toxicol. 52, 87-99. https://doi.org/10.1016/S0166-445X(00)00143-0
  24. Rodgers, B. D., Roalson, E. H., Weber, G.. M., Roberts, S. B. and Goetz, F. W. 2007. A proposed nomenclature consensus for the myostatin gene family. Am. J. Physiol. Endocrinol. Metab. 292, E371-E372.
  25. Rodgers, B. D. and Weber, G. M. 2001. Sequence conservation among fish myostatin orthologues and the characterization of two additional cDNA clones from Morone saxatilis and Morone americana. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 129, 597-603. https://doi.org/10.1016/S1096-4959(01)00350-5
  26. Schuelke, M., Wagner, K. R., Stolz, L. E., Hubner, C., Riebel, T., Komen, W., Braun, T., Tobin, J. F. and Lee, S. J. 2004. Myostatin mutation associated with gross muscle hypertrophy in a child. N. Engl. J. Med. 350, 2682-2688. https://doi.org/10.1056/NEJMoa040933
  27. Smith, J. A., Lewis, A. M., Wiener, P. and Williams, J. L. 2000. Genetic variation in the bovine myostatin gene in UK beef cattle: allele frequencies and haplotype analysis in the South Devon. Anim. Genet. 31, 306-309. https://doi.org/10.1046/j.1365-2052.2000.00521.x
  28. Snell, T. W., Kubanek, J. M., Carter, W. E., Payne, A. B., Kim, J., Hicks, M. and Stelzer, C. P. 2006. A protein signal triggers sexual reproduction in Brachionus plicatilis (Rotifera). Marine Biol. 149, 763-773. https://doi.org/10.1007/s00227-006-0251-2
  29. Szabo, G., Dallmann, G., Muller, G., Patthy, L., Soller, M. and Varga, L. 1998. A deletion in the myostatin gene causes the compact (Cmpt) hypermuscular mutation in mice. Mamm. Genome 9, 671-672. https://doi.org/10.1007/s003359900843
  30. Terova, G., Bernardini, G., Binelli, G., Gornati, R. and Saroglia, M. 2006. cDNA encoding sequences for myostatin and FGF6 in sea bass (Dicentrarchus labrax, L.) and the effect of fasting and refeeding on their abundance levels. Domest. Anim. Endocrinol. 30, 304-319. https://doi.org/10.1016/j.domaniend.2005.08.003
  31. Thies, R. S., Chen, T., Davies, M. V., Tomkinson, K. N., Pearson, A. A., Shakey, Q. A. and Wolfman, N. M. 2001. GDF-8 propeptide binds to GDF-8 and antagonizes biological activity by inhibiting GDF-8 receptor binding. Growth Factors 18, 251-259. https://doi.org/10.3109/08977190109029114
  32. Thomas, M., Langley, B., Berry, C., Sharma, M., Kirk, S., Bass, J. and Kambadur, R. 2000. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J. Biol. Chem. 275, 40235-40243. https://doi.org/10.1074/jbc.M004356200
  33. Wolfman, N. M., McPherron, A. C., Pappano, W. N., Davies, M. V., Song, K., Tomkinson, K. N., Wright, J. F., Zhao, L., Sebald, S. M., Greenspan, D. S. and Lee, S. J. 2003. Activation of latent myostatin by the BMP-1/tolloid family of metalloproteinases. Proc. Natl. Acad. Sci. USA 100, 15842-15846. https://doi.org/10.1073/pnas.2534946100
  34. Xu, C., Wu, G., Zohar, Y. and Du, S. J. 2003. Analysis of myostatin gene structure, expression and function in zebrafish. J. Exp. Biol. 206, 4067-4079. https://doi.org/10.1242/jeb.00635
  35. Yang, J., Ratovitski, T., Brady, J. P., Solomon, M. B., Wells, K. D. and Wall, R. J. 2001. Expression of myostatin pro domain results in muscular transgenic mice. Mol. Reprod. Dev. 60, 351-361. https://doi.org/10.1002/mrd.1097
  36. Yoshimatsu, T., Higuchi, T., Zhang, D., Fortes, V. R., Tanaka, K. and Yoshimura, K. 2006. Effect of dietary cobalt supplementation on the population growth of rotifer Brachionus rotundiformis. Fish Sci. 72, 214-216. https://doi.org/10.1111/j.1444-2906.2006.01139.x
  37. Zhu, X., Hadhazy, M., Wehling, M., Tidball, J. G. and McNally, E. M. 2000. Dominant negative myostatin produces hypertrophy without hyperplasia in muscle. FEBS Lett. 474, 71-75. https://doi.org/10.1016/S0014-5793(00)01570-2