DOI QR코드

DOI QR Code

Isolation and Culture Medium Optimization for Thermostable Extracellular α-Amylase Production by Thermophilic Alicyclobacillus acidocaldarius

세포외 고온성 α-아밀라제를 생산하는 Alicyclobacillus acidocaldarius 의 분리 및 효소생산용 최적 배양 조건

  • Received : 2012.02.06
  • Accepted : 2012.03.16
  • Published : 2012.04.30

Abstract

A thermophilic $Alicyclobacillus$ $acidocaldarius$, which produces thermostable ${\alpha}$-amylase, was isolated from the hot water effluent of a boiled rice mill near Tirupati, Andhra Pradesh, India. The effect of different culture conditions on the growth and production of extracellular ${\alpha}$-amylase by thermophilic $A.$ $acidocaldarius$ was investigated in laboratory scale. The results showed that the optimum conditions for the production of ${\alpha}$-amylase are a temperature of $60^{\circ}C$, pH of 6.0, and medium starch concentration of 1.0%, and yeast extract and tryptone of 0.2%. Surfactants, like Tween-20 and SDS, up to 0.02%, were found to increase the bacterial growth and enzymes. Further increase in their concentration resulted in significantly decreased enzyme production.

고온성 ${\alpha}$-아밀라제를 생산하는 내열성 $Alicyclobacillus$ $acidocaldarius$ 균을 인도 Tirupati, Andhra Pradesh 지역의 가열한 미강 열수 추출물에서 분리하였다. 분리균인 내열성 $Alicyclobacillus$ $acidocaldarius$가 생산하는 세포 외 ${\alpha}$-아밀라제의 생산과 성장에 미치는 배양조건을 실험실 규모로 조사하였다. 그 결과 ${\alpha}$-amylase의 고생산 최적 조건은 온도 $60^{\circ}C$, pH 6.0 및 배지의 전분농도 1.0%, yeast extract와 tryptone은 0.2%를 나타냈다. Surfactants like Tween-20과 SDS 같은 계면활성제는 0.02%까지 균주의 성장과 효소 생산을 증가 시켰으나, 그 이상의 농도 에서는 ${\alpha}$-amylase 효소의 생산이 현저하게 감소하였다.

Keywords

References

  1. Abou-Elela, G. M., Nermeen, A. El-Sersy, and Wefky, S. H. 2009. Statistical Optimization of Cold Adapted ${\alpha}$-amylase Production by Free and Immobilized Cells of Nocardiopsis aegyptia. J. Appl. Sci. Res. 5, 286-292.
  2. Brown, A. E. 2008. Benson's Microbiological Applications: Laboratory, 11th edition, McGraw-Hill publications
  3. Chung, Y. C., Kobayashi, T., Kanai, H., Akiba, T. and Kudo, T. 1995. Purification and properties of extracellular amylase from the hyperthermophilic archaeon Thermococcus profundus DT5432. Appl. Environ. Microbiol. l61, 1502-1506.
  4. Crabb, W. D. and Mitchinson, C. 1997. Enzymes involved in the processing of starch to sugars. Trends. Biotechnol. 15, 349-352. https://doi.org/10.1016/S0167-7799(97)01082-2
  5. Dettori-Campus, B. G., Priest, F. G. and Stark, J. R. 1992. Hydrolysis of starch granules by the amylase from Bacillus stearotheemophilus NCA 26. Process Biochem. 27, 17-21. https://doi.org/10.1016/0032-9592(92)80004-M
  6. Dhanasekaran, D., Sivamani, P., Rajakumar, G., Panneerselvam, A. and Thajuddin, N. 2006. Studies on free and Immobilised cells of Bacillus species on the production of ${\alpha}$-amylase. Int. J. Microbiol. 2, 1937-8289.
  7. Dharani Aiyer, P. V. 2004. Effect of C:N ratio on ${\alpha}$-amylase production by Bacillus licheniformis SPT 27. Afri. J. Biotech. 3, 519-522.
  8. Dowlathabad, M. R., Swamy, A. V. N. and SivaRamaKrishna, G. 2007. Bioprocess technology Strategies, Production and Purification of Amylases: An overview. Internet J. Genomics Proteomics. 2, 2-6.
  9. Eiichi, H., Tanaka, A. and Takahisa, K. 2006. Effects of a Nonionic Surfactant on the Behavior of Bacillus amyloliquefaciens ${\alpha}$-Amylase in the Hydrolysis of Malto-oligosaccharide. J. Surfac. Deter. 9, 1-5.
  10. Feller, G., Le Bussy, O. and Gerday, C. 1998. Expression of psychrophilic genes in mesophilic hosts: assessment of the folding state of a recombinant amylase. Appl. Environ. Microbiol. 64, 1163-1165.
  11. Fogarty, M. 1983. Microbial Enzymes and Biotechnology. Applied Science Publishers, England.
  12. Gomes, I., Gomes, J. and Steiner, W. 2003. Highly thermostable amylase and pullulanase of the extreme thermophilic eubacterium Rhodothermus marinus: production and partial characterization. Bioresour. Technol. 90, 207-214. https://doi.org/10.1016/S0960-8524(03)00110-X
  13. Goyal, N., Gupta, J. K. and Soni, S. K. 2005. A novel raw starch digesting thermostable ${\alpha}$-amylase from Bacillus sp. I-3 and its use in the direct hydrolysis of raw potato starch, Enzyme Microb. Technol. 37, 723-734. https://doi.org/10.1016/j.enzmictec.2005.04.017
  14. Hamilton, L. M., Kelly, C. T. and Fogarty, W. M. 1995. Purification and properties of the raw starch degrading ${\alpha}$-amylase of Bacillus sp.IMD434. Biotechol. Lett. 21, 111-115.
  15. Jensen, B. and Olsen, J. 1991. Physicochemical properties of a purified ${\alpha}$-amylase from the thermophilic fungus Thermomyces lanuginosus. Enzyme Microb. Technol. 14, 112-116.
  16. Kosaric, N., Wieczorek, A., Cosentino, G. P., Magee, R. J. and Prenosil, J. E. 1983. Ethanol fermentation. Biotechnol. 3, 258-385.
  17. Kumar, G. S., Chandra, M. S., Mallaiah, K. V., Sreenivasulu, P. and Choi, Y. L. 2010. Purification and characterization of highly thermostable ${\alpha}$-amylase from thermophilic alicyclobacillus acidocaldarius. Biotechnol. Bioprocess Eng. 15, 435-440. https://doi.org/10.1007/s12257-009-0072-5
  18. Kuo, M. J. and Hartman, P. A. 1966. Isolation of amylolytic strains of Thermoactinomyces vulgaris and production of thermophilic actinomycete amylases. J. Bacteriol. 92, 723-726.
  19. Liebl, W., Feil, R., Gabelsberger, J. S., Kellermann, J. and Schleifer, K. H. 1992. Purification and characterization of a novel thermostable 4-${\alpha}$-glucanotransferase of Thermotoga maritima cloned in Escherichia coli. Eur. J. Biochem. 207, 81-88. https://doi.org/10.1111/j.1432-1033.1992.tb17023.x
  20. Martinek, K., Levashov, A. V., Klyachko, N., Khmelnitski, Y. L. and Berezin, I. V. 1986. Micellar Enzymology. Eur. J. Biochem. 155, 453-457. https://doi.org/10.1111/j.1432-1033.1986.tb09512.x
  21. McMohan, E. M., Ketty, C. T. and Forgarty, W. M. 1999. High maltose producing amylolytic system of a Streptomyces spp. Biotechnol. Lett. 21, 23-26. https://doi.org/10.1023/A:1005444928607
  22. Miller, G. L. 1959. Use of dinitrosalicylic acid for determining reducing sugars. Anal. Chem. 31, 426-428. https://doi.org/10.1021/ac60147a030
  23. Morkeberg, R., Carlsen, M. and Neilsen, J. 1995. Induction and repression of ${\alpha}$-amylase production in batch and continuous cultures of Aspergillus oryzae. Microbiology 141, 2449-2454. https://doi.org/10.1099/13500872-141-10-2449
  24. Narayana, K. J. P. and Vijayalakshmi, M. 2008. Production of extracellular ${\alpha}$-amylase by Streptomyces albidoflavus. Asian J. Biochem. 3, 194-197. https://doi.org/10.3923/ajb.2008.194.197
  25. Nguyen, Q. D., Judit, Rezessy-Szabo, M. and Hoschke, A. 2000. Optimisation of composition of media for the production of amylolytic enzymes by Thermomyces lanuginosus ATCC 34626. Food-technol. Biotechnol. 38, 229-234.
  26. Pandey, A., Nigam, P., Soccol, C. R., Soccol, V. T., Singh, D. and Mohan, D. 2000. Advances in microbial amylases. Biotechnol. Appl. Biochem. 31, 135-152. https://doi.org/10.1042/BA19990073
  27. Rao, D. M., Swamy, A. V. N. and Sivaramaktishna, G. 2007. Bioprocess technology strategies, production and purification of amylases: An overview. Internat J. Genomics Proteomics 2, 1540-2630.
  28. Sodhi, H. K., Sharma, K., Gupta, J. K. and Soni, S. K. 2005. Production of a thermostable ${\alpha}$-amylase from Bacillus sp. PS-7 by solid-state fermentation and its synergistic use in the hydrolysis of malt starch for alcohol production. Process Biochem. 40, 525-534. https://doi.org/10.1016/j.procbio.2003.10.008
  29. Srivastava, R. A. K. and Baruah, J. N. 1986. Culture conditions for production of thermostable amylase by Bacillus stearothermophilus. Appl. Environ. Microbiol. 52, 179-184.
  30. Syu, M. J. and Chen, Y. H. 1997. A study on the ${\alpha}$-amylase fermentation performed by Bacillus amyloliquefaciens, Chem. Eng. J. 65, 237-247. https://doi.org/10.1016/S1385-8947(97)00020-X
  31. Tanaka, A. and Hoshino, E. 1999. Study on the substrate specificity of a-amylases that contribute to soil removal in detergents. J. Surfact. Deterg. 2,193-197. https://doi.org/10.1007/s11743-999-0073-8
  32. Vieille, K. and Zeikus, G. J. 2001. Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms of thermostability. Microbiol. Mol. Biol. Rev. 65, 1-43. https://doi.org/10.1128/MMBR.65.1.1-43.2001
  33. Wim, J. and Quax, 2006. Bacterial Enzymes. Chapter, 3.4. Prokaryotes. 1, 777-796.