DOI QR코드

DOI QR Code

Effect of Concentrated Dangyooja-derived Flavonoids Extract Added to Citrus Beverage on Obesity and Blood Lipids in Rats

당유자 유래 Flavonoids 농축액이 첨가된 감귤 음료의 쥐 비만 및 혈중 지질에 미치는 영향

  • Choi, Young-Hun (Citrus Research Station, National Institute of Horticultural & Herbal Science) ;
  • Lee, Young-Jae (College of Veterinary Medicine, Jeju National University) ;
  • Lee, Sun-Yi (Citrus Research Station, National Institute of Horticultural & Herbal Science) ;
  • Chae, Chi-Won (Citrus Research Station, National Institute of Horticultural & Herbal Science) ;
  • Park, Suk-Man (Citrus Research Station, National Institute of Horticultural & Herbal Science) ;
  • Kim, Sang-Suk (Citrus Research Station, National Institute of Horticultural & Herbal Science) ;
  • An, Hyun-Joo (Planning and Coordination Division, National Institute of Horticultural & Herbal Science) ;
  • King, Dale (College of Veterinary Medicine, Jeju National University) ;
  • Han, Chang-Hoon (College of Veterinary Medicine, Jeju National University) ;
  • Hong, Hyun-Ju (College of Veterinary Medicine, Jeju National University)
  • 최영훈 (국립원예특작과학원 감귤시험장) ;
  • 이영재 (제주대학교 수의과대학) ;
  • 이선이 (국립원예특작과학원 감귤시험장) ;
  • 채치원 (국립원예특작과학원 감귤시험장) ;
  • 박석만 (국립원예특작과학원 감귤시험장) ;
  • 김상숙 (국립원예특작과학원 감귤시험장) ;
  • 안현주 (국립원예특작과학원 기획조정과) ;
  • ;
  • 한창훈 (제주대학교 수의과대학) ;
  • 홍현주 (제주대학교 수의과대학)
  • Received : 2011.06.27
  • Accepted : 2012.02.16
  • Published : 2012.04.30

Abstract

This study aimed to develop a new type of functional citrus beverage (Citurs-F) containing flavonoids extracted from the young fruits of satsuma mandarin ($Citrus$ $unshiu$) and matured fruits of Jeju native dangyooja ($C.$ $grandis$). We made beverages that contained 30% of satsuma mandarin extract with different percentages of concentrated dangyooja-derived flavonoid extracts. In sensory evalution, the highest response indices of color, taste and aroma were from the beverages based on the 30% young fruit extracts plus 15% (Citrus-F-15) and 20% (Citrus-F-20) flavonoids extract from the dangyooja using the KILO prep. In the changes of body weight after oral administration of the Citrus-F, the rat group with HF diet plus the Citrus-F decreased the body weight compared to the rat group fed only HF diet. This effect was to be continued for 9 weeks until the end of experiment. In the lipid content in blood, the rat group with oral administration of citrus extractions merely tended to resolve it in serum test. However, all the 0.1% Citrus-F-15 and Citrus-F-20 treated rat groups from the beginning or after 5 weeks appeared the lowest lipid contents in the blood. In the cholesterol contents, the rat group feeding the KILO-prep's extraction from the beginning weren't significantly recognized them in the group but the rat group feeding 0.1% Citrus-F-15 acted to reduce in the cholesterol contents from 5 weeks. The results indicated that the Citrus-F-15 with rich flavonoids might be main source alleviating the vascular diseases and obesity in human diet.

본 연구에서는 제주산 청과즙과 제주 재래귤인 당유자 과즙 내의 기능성 성분을 대량 추출하여 새로운 타입의 고기능성 감귤 음료를 개발코자 기능성 연구를 실시하였다. 관능 검사를 통해 청과 착즙액 30%에 KILO Prep을 이용하여 얻은 당유자 유래 플라보노이드 농축액 15%를 포함하는 Citrus-F 음료를 제조하였다. 새롭게 제조된 Citrus-F를 경구 투여하여 쥐 체중의 변화를 관찰한 결과 HF diet(고지방사료)와 Citrus-F를 병행하여 급이한 군의 경우 급이 7주차부터 HF diet만 단독으로 급이한 군에 비하여 뚜렷하게 체중이 감소되어 그 효과는 실험이 끝나는 9주째까지 지속되었다. 또한 Citrus-F가 혈중지질에 미치는 영향을 알아보기 위해 경구 투여한 쥐를 대상으로 한 혈청검사에서 혈중 지방 함량은 Citrus-F 처리군에서 감소하는 경향을 보였다. 특히 급이 시점을 초기부터 시작한 경우에는 triglycerid의 수치는 감소하였지만 total cholesterol과 HDL-cholesterol의 수치에는 별다른 영행을 미치지 못했다. 그러나 5주 후부터 0.1% Citrus-F를 급이한 처리군에서 triglyceride, total cholesterol과 HDL-cholesterol의 수치가 모두 감소함을 확인할 수 있었다. 본 연구 결과 당유자 유래 플라보노이드 농축액을 15% 포함하는 고기능성 Citrus-F 음료는 비만 및 각종 혈중 지질 관련 질병의 예방에 효과가 있을 것으로 사료된다.

Keywords

References

  1. Benavente-García, O., J. Castillo, and J.A. Del Rio. 1993. Changes in neodiosmin levels during the development of Citru saurantium leaves and fruits. Postulation of neodiosmin biosynthetic pathway. J. Agric. Food Chem. 41:1916-1919. https://doi.org/10.1021/jf00035a020
  2. Berhow, M.A. and C.E. Vandercook. 1991. Sites of naringin biosynthesis in grapefruit seedlings. J. Plant Physiol. 138:176-179. https://doi.org/10.1016/S0176-1617(11)80266-X
  3. Castillo, J., O. Benavente-Garcia, and J.A. Del Rio. 1992. Naringin and neohesperidin levels during development of leaves, flower buds, and fruits of Citrus aurantium. Plant Physiol. 99:67-73. https://doi.org/10.1104/pp.99.1.67
  4. Castillo, J., O. Benavente-Garcia, and J.A. Del Rio. 1993. Hesperetin 7-O-glucoside and prunin in Citrus species (C. aurantium and C. paradist). A study of their quantitative distribution in immature fruits and as immediate precursors of neohesperidin and naringin in C. aurantium. J. Agric. Food Chem. 41:1920-1924. https://doi.org/10.1021/jf00035a021
  5. Cook, N.C. and S. Samman. 1996. Flavonoids-Chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem. 7:66-76. https://doi.org/10.1016/0955-2863(95)00168-9
  6. Cook, R. 1983. Quality of citrus juices as related to composition and processing practices. Food Technol. 133:68-71.
  7. Del Rio, J.A., A. Ortuno, F.R. Marín, D. Garcia Puig, and F. Sabater. 1992. Bioproduction of neohesperidin and naringin in callus cultures of Citrus aurantium. Plant Cell Rep. 11:592-596 https://doi.org/10.1007/BF00233099
  8. Del Rio, J.A. and A. Ortuno. 1994. Citrus paradisi Macf. (Grapefruit): In vitro culture and the bioproduction of sesquiterpenes nootkatone, valencene and other secondary metabolites, p. 123-138. In: Medicinal and Aromatic Plants VIIYPS Bajaj (ed.). Biotechnology in Agriculture and Forestry Vol. 28. Springer, Heidelberg, Germany.
  9. Demonty, I., Y. Lin, Y.E.M.P. Zebregs, M.A. Vermeer, H.C.M. van der Knaap, M. Jakel, and E.A. Trautwein. 2010. The citrus flavonoids hesperidin and naringin do not affect serum cholesterol in moderately. J. Nutr. 140:1615-1620. https://doi.org/10.3945/jn.110.124735
  10. Hasewaga, S. and V.P. Maier 1972. Cinnamate hydroxylation and the enzymes leading from phenylpyruvate to p-coumarate synthesis in grapefruit tissues. Phytochemistry 11:1365-1370. https://doi.org/10.1016/S0031-9422(00)90089-X
  11. Hasegawa, S. and V.P. Maier. 1981. Some aspects of Citrus biochemistry and juice quality. Proc. Int. Soc. Citric. 2:914-918.
  12. Hertog, M.G., P.C.H. Hollman, M.B. Katan, and D. Kromhout, 1993. Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen Elderly Study. Lancet 342:1007-1011. https://doi.org/10.1016/0140-6736(93)92876-U
  13. Hodek, P., P. Trefil, and M. Stiborova. 2002. Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450. Chem. Biol. Interact. 139:1-21. https://doi.org/10.1016/S0009-2797(01)00285-X
  14. Horowitz, R.M. and B. Gentili. 1969. Taste and structure in phenolic glycosides. J. Agric. Food Chem. 17:696-700. https://doi.org/10.1021/jf60164a049
  15. Horowitz, R.M. and B. Gentili. 1977. Flavonoids constituents of citrus, p. 397-426. In: S. Nagy, P.E. Shaw, and M.K. Vedhuis (eds.). Citrus science and technology. AVI Publishing, Westport, CT.
  16. Jourdan, P.S., C.A. McIntosh, and R.L. Mansell 1985. Naringin levels in citrus tissues. II. Quantitative distribution of naringin in Citrusparadisi Macfad. Plant Physiol. 77:903-908. https://doi.org/10.1104/pp.77.4.903
  17. Kim, H.K., T.-S. Jeong, M.-K. Lee, Y.B. Park, and M.-S. Choi. 2003. Lipid-lowering efficacy of hesperetin metabolites in high-cholesterol feed rats. Clin. Chim. Acta. 327:129-137 https://doi.org/10.1016/S0009-8981(02)00344-3
  18. Kim, S.S., J.S. Baik, T.-H. Oh, W.-J. Yoon, N.H. Lee, and C.-G. Hyun. 2008. Biological activities of Korean Citrus obovodes and Citrus natsudaidai essential oils against acne-inducing bacteria. Biosci. Biotechnol. Biochem. 72:2507-2513. https://doi.org/10.1271/bbb.70388
  19. Kim, Y.D., W.J. Ko, K.S. Koh, Y.J. Jeon, and S.H. Kim. 2009. Composition of flavonoids and antioxidative activity from juice of Jeju native citrus fruits during maturation. Korean J. Nutr. 42:278-290. https://doi.org/10.4163/kjn.2009.42.3.278
  20. Lee, S., Y.B. Park, K.H. Bae, S.H. Bok, Y.K. Kwon, and E.S. Lee. 1999. Cholesterol-lowering activity of naringenin via inhibition of 3-hydroxy-3-methylglutaryl coenzyme a reductase and acyl coenzyme A: Cholesterol acyltransferase in rats. Ann. Nutr. Metabolism 43:173-180. https://doi.org/10.1159/000012783
  21. Ortuno, A., D. Garcia Puig, M.D. Fuster, M.L. Perez, F. Sabater, I. Porras, A. Garcia Lidon, and J.A. Del Rio. 1995. Flavanone and nootkatone levels in different varieties of grapefruit and pummelo. J. Agric. Food Chem. 43:1-5. https://doi.org/10.1021/jf00049a001
  22. Tripoli, E., M.L. Guardia, S. Giammanco, D.D. Majo, and M. Giammanco. 2007. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 104:466-479. https://doi.org/10.1016/j.foodchem.2006.11.054
  23. Vandercook, C.E. and B. Tisserat. 1989. Flavonoid changes in developing lemons grown in vivo and in vitro. Phytochemistry 28:799-803. https://doi.org/10.1016/0031-9422(89)80118-9
  24. Yusof, S., H.M. Ghazali, and G.S. King. 1990. Naringin content in local citrus fruits. Food Chem. 37:113-121. https://doi.org/10.1016/0308-8146(90)90085-I
  25. Zhang, X., F.Z. Lee, and J.B. Eun. 2008. Physicochemical properties and glucose transport retarding effect of pectin from flesh of Asian pear at different growth stages. Korean J. Food Sci. Technol. 40:491-496.

Cited by

  1. 당유자 껍질 분말을 첨가한 스폰지 케이크의 품질 특성 vol.23, pp.8, 2012, https://doi.org/10.20878/cshr.2017.23.8.008
  2. 여대생의 건강체력과 비만에 대한 물과 커피 섭취량과의 관계 vol.37, pp.4, 2020, https://doi.org/10.12925/jkocs.2020.37.4.649