DOI QR코드

DOI QR Code

Screening of Tomato Spotted Wilt Virus Resistance in Tomato Accessions

토마토반점위조바이러스(TSWV) 저항성 토마토 유전자원 탐색

  • Han, Jung-Heon (Research & Development Unit, Pepper & Breeding Institute, Business Incubator, College of Agriculture and Life Sciences, Seoul National University) ;
  • Choi, Hak-Soon (Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Lee, Jun-Dae (Research & Development Unit, Pepper & Breeding Institute, Business Incubator, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Jae-Deok (Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Won-Phil (Research & Development Unit, Pepper & Breeding Institute, Business Incubator, College of Agriculture and Life Sciences, Seoul National University) ;
  • Choi, Hong-Soo (Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Jung-Soo (Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Yoon, Jae-Bok (Research & Development Unit, Pepper & Breeding Institute, Business Incubator, College of Agriculture and Life Sciences, Seoul National University)
  • 한정헌 ((주)고추와 육종 기업부설연구소) ;
  • 최학순 (국립원예특작과학원 채소과) ;
  • 이준대 ((주)고추와 육종 기업부설연구소) ;
  • 김재덕 (국립농업과학원 작물보호과) ;
  • 이원필 ((주)고추와 육종 기업부설연구소) ;
  • 최홍수 (국립농업과학원 작물보호과) ;
  • 김정수 (국립농업과학원 작물보호과) ;
  • 윤재복 ((주)고추와 육종 기업부설연구소)
  • Received : 2011.11.17
  • Accepted : 2011.12.29
  • Published : 2012.04.30

Abstract

A total of 94 tomato accessions were evaluated for the resistance to $Tomato$ $spotted$ $wilt$ $virus$ (TSWV) using a Sw5-2 SCAR marker and bioassay. PCR products of the marker were approximately 574 bp, 500 bp, and 462 bp, among which the longest was linked to TSWV resistance allele of Sw5-b. This allele was only found in three accessions (09-438, 10-318, and 10-321) in which some individuals showed apparent recovery or stem necrosis symptom to a tomato isolate of TSWV-pb1. Thirty-five individuals (one per each accession) which were non-infected by ELISA were selected for further observation. Among these, 26 individuals that did not show any symptom at 5 months after inoculation were confirmed for viral infection by RT-PCR. TSWV-specific PCR amplicon was weakly detected in all 26 individuals including 'Eureta', a commercial F1 possessing the resistance allele of Sw5-b. The resistant genes in the selected individuals may play an important role for reducing the viral concentration in tissues of inoculated tomato plants and seems to be quantitatively controlled by several factors including Sw5-b gene.

Sw5-2 SCAR 분자표지와 생물검정법을 이용하여 토마토 유전자원 94종의 $Tomato$ $spotted$ $wilt$ $virus$(TSWV) 저항성을 조사하였다. Sw5-2 SCAR 분자표지의 PCR 산물은 대략 574bp, 500bp, 462bp였는데, 크기가 가장 큰 PCR 산물이 Sw5-b 저항성 대립유전자와 연관되어 있었다. Sw5-b 저항성 대립유전자는 3개 수집종('Eureta', 10-318, 10-321)에서 관찰되었는데, 접종한 개체 가운데 이들 가운데 일부는 TSWV-pb1(토마토 분리주)에 일시적으로 감염되어 회복되거나 줄기에 괴사 병징을 보였다. ELISA 검사에서 음성으로 판명된 수집종 당 1개체씩 총 35개체를 선발하여 병징 발현 및 바이러스 감염 유무를 추가로 조사하였다. 접종 5개월 이후에 병징이 나타나지 않은 26개체를 대상으로 RT-PCR을 이용하여 TSWV 감염유무를 조사한 결과, 모든 개체에서 TSWV의 RT-PCR 산물이 약하게 증폭되었고, 이들 PCR 산물의 증폭 수준은 'Eureta'와 비슷하였다. 선발된 유전자원의 저항성은 조직 내 TSWV의 농도를 낮게 하는데 중요한 역할을 하고 이들은 Sw5를 포함한 여러 가지 유전자들에 의해 양적으로 조절되는 것으로 판단된다.

Keywords

References

  1. Aramburu, J. and M. Mart. 2003. The occurrence in north-east Spain of a variant of tomato spotted wilt virus (TSWV) that breaks resistance in tomato (Lycopersicon esculentum) containing the Sw-5 gene. Plant Pathol. 52:407. https://doi.org/10.1046/j.1365-3059.2003.00829.x
  2. Boiteux, L.S. and L.B. Giordano. 1993. Genetic basis of resistance against two Tospovirus species in tomato (Lycopersicon esculentum). Euphytica 71:151-154. https://doi.org/10.1007/BF00023478
  3. Brommonschenkel, S.H., A. Frary, and S.D. Tanksley. 2000. The broad-spectrum Tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Mol. Plant Microbe Interact. 13:1130-1138. https://doi.org/10.1094/MPMI.2000.13.10.1130
  4. Canady, M.A., M.R. Stevens, M.S. Barineau, and J.W. Scott. 2001. Tomato spotted wilt virus (TSWV) resistance in tomato derived from Lycopersicon chilense Dun. LA 1938. Euphytica 117:19-25. https://doi.org/10.1023/A:1004089504051
  5. Cho, J.D., J.S. Kim, S.H. Lee, G.S. Choi, and B.N. Chung. 2007. Viruses and symptoms on peppers, and their infection types in Korea. Res. Plant Dis. 13:75-81. https://doi.org/10.5423/RPD.2007.13.2.075
  6. Cho, J.D., J.Y. Kim, J.S. Kim, H.S. Choi, and G.S. Choi. 2010. Occurrence and symptoms of tomato spotted wilt virus on eggplant, whole radish and sugar loaf in Korea. Res. Plant Dis. 16:232-237. https://doi.org/10.5423/RPD.2010.16.3.232
  7. Choi, H.S., S.H. Lee, M.K. Kim, H.R. Kwak, J.S. Kim, J.D. Cho, and G.S. Choi. 2010. Occurrence of virus diseases on major crops in 2009. Res. Plant Dis. 16:1-9. https://doi.org/10.5423/RPD.2010.16.1.001
  8. Dianese E.C., M.E.N. Fonseca, R. Goldbach, R. Kormelink, A.K. Inoue-Nagata, R.O. Resende, and L.S. Boiteux. 2010. Development of a locus-specific, co-dominant SCAR marker for assistedselection of the Sw-5 (Tospovirus resistance) gene cluster in a wide range of tomato accessions. Mol. Breeding 25:133-142. https://doi.org/10.1007/s11032-009-9313-8
  9. Garland S., M. Sharman, D. Persley, and D. Mcgrath. 2005. The development of an improved PCR-based marker system for Sw-5, an important TSWV resistance gene of tomato. Aust. J. Agr. Res. 56:285-289. https://doi.org/10.1071/AR04140
  10. Gordillo, L.F., M.R. Stevens, M.A. Millard, and B. Geary. 2008. Screening two Lycopersicon peruvianum collections for resistance to tomato spotted wilt virus. Plant Dis. 92:694-704. https://doi.org/10.1094/PDIS-92-5-0694
  11. Han J.H., W.P. Lee, J. Lee, M.K. Kim, H.S. Choi, and J.B. Yoon. 2011. Symptom and resistance of cultivated and wild Capsicum accessions to tomato spotted wilt virus. Res. Plant Dis. 17:59-65. https://doi.org/10.5423/RPD.2011.17.1.059
  12. Kim, J.Y., J.D. Cho, J.S. Kim, S.S. Hong, J.G. Lee, G.S. Choi, and J.W. Lim. 2009. Reduction of tomato spotted wilt virus on table tomatoes in greenhouses by soil fumigation. Plant Pathol. J. 25:151-156. https://doi.org/10.5423/PPJ.2009.25.2.151
  13. Paterson, R.G., S.J. Scott, and R.C. Gergerich. 1989. Resistance in two Lycopersicon species to an Arkansas isolate of tomato spotted wilt virus. Euphytica 43:173-178. https://doi.org/10.1007/BF00037910
  14. Prince J.P., Y. Zhang, E.R. Radwanski, and M.M. Kyle. 1997. A versatile and high-yielding protocol for the preparation of genomic DNA from Capsicum spp. (pepper). Hortscience 32: 937-939.
  15. Roggero, P., V. Masenga, and L. Tavella. 2002. Field isolates of tomato spotted wilt virus overcoming resistance in pepper and their spread to other hosts in Italy. Plant Dis. 86:950-954. https://doi.org/10.1094/PDIS.2002.86.9.950
  16. Spassova, M.I., T.W. Prins, R.T. Folkertsma, R.M. Klein-Lankhorst, J. Hille, R.W. Goldbach, and M. Prins 2001. The tomato gene SW5 is a member of the coiled coil, nucleotide binding, leucine-rich repeat class of plant resistance gene and confers resistance to TSWV in tobacco. Mol. Breeding 7:151-161. https://doi.org/10.1023/A:1011363119763
  17. Stevens, M.R., S.J. Scott, and R.C. Gergerich. 1992. Inheritance of a gene for resistance to tomato spotted wilt virus (TSWV) from Lycopersicon peruvianum. Euphytica 59:9-17.
  18. Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.J. Higgins. 1997. The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876-4882. https://doi.org/10.1093/nar/25.24.4876
  19. Whitefield, A.E., D.E. Ullman, and T.L. German. 2005. Tospovirus-Thrips interactions. Annu. Rev. Phytopathol. 43:1-31. https://doi.org/10.1146/annurev.phyto.43.040204.140209

Cited by

  1. Reverse Transcription Droplet Digital PCR을 활용한 Tomato Spotted Wilt Virus 검출 및 정량 vol.27, pp.3, 2021, https://doi.org/10.5423/rpd.2021.27.3.120