DOI QR코드

DOI QR Code

Agent's Activities based Intention Recognition Computing

에이전트 행동에 기반한 의도 인식 컴퓨팅

  • 김진옥 (대구한의대학교 국제문화정보대학 모바일콘텐츠학부)
  • Received : 2011.10.25
  • Accepted : 2012.01.13
  • Published : 2012.04.30

Abstract

Understanding agent's intent is an essential component of the human-computer interaction of ubiquitous computing. Because correct inference of subject's intention in ubiquitous computing system helps particularly to understand situations that involve collaboration among multiple agents or detection of situations that can pose a particular activity. This paper, inspired by people have a mechanism for interpreting one another's actions and for inferring the intentions and goals that underlie action, proposes an approach that allows a computing system to quickly recognize the intent of agents based on experience data acquired through prior capabilities of activities recognition. To proceed intention recognition, proposed method uses formulations of Hidden Markov Models (HMM) to model a system's prior experience and agents' action change, then makes for system infer intents in advance before the agent's actions are finalized while taking the perspective of the agent whose intent should be recognized. Quantitative validation of experimental results, while presenting an accurate rate, an early detection rate and a correct duration rate with detecting the intent of several people performing various activities, shows that proposed research contributes to implement effective intent recognition system.

에이전트의 의도를 인식하는 것은 사물지능형 컴퓨팅에서 인간컴퓨터 상호작용의 주요 부분이다. 컴퓨팅 시스템에서 인식 대상의 의도를 정확하게 유추하면 다수의 에이전트간의 협력 상황 이해와 특정 행동이 취해질 때의 상황 파악이 쉽기 때문이다. 본 연구는 다른 이의 행동을 해석하고 행동의 근거가 되는 의도와 목적을 추론하는 인간의 기제를 바탕으로, 컴퓨팅 시스템이 행동을 인식하여 습득한 사전 경험 데이터를 이용, 대상의 의도를 빠르게 인식하는 방법을 제안한다. 의도 인식을 수행하기 위해 제안 방법은 에이전트의 목적에 따른 행동 변화를 검출하고 시스템이 사전에 학습한 행동 정보를 모델링하기 위해 특정 형태의 행동 은닉마코프 형식을 이용한다. 에이전트의 의도를 추론하는 데 관점을 다양하게 취함으로써 시스템이 에이전트의 행동이 끝나기 전에 미리 의도를 추론하도록 한다. 의도 인식의 정확도, 조기 검출률과 정확 지속률에 대한 실험으로 여러 가지 행동을 취하는 에이전트의 의도 검출 결과를 정량적으로 제시함으로써 제안 연구가 효과적인 의도 인식 시스템 구현에 기여함을 보여준다.

Keywords

References

  1. M. Iacobini, I. Molnar-Szakacs, V. Gallese, G. BucciNo, J. Mazziotta, G. Rizzolatti, Grasping the Intentions of Others with One''s Own Mirror Neuron System, PLoS Biol, Vol,3, No.3. pp.529-535, 2005.
  2. I. Kaliouby, P. Robinson, Real-time inference of complex mental states from facial expressions and head gestures, Proceedings of the 2004 Conf. Computer Vision and Pattern Recognition Workshop, Vol.10, pp.154, 2004.
  3. D. Koller, N. Friedmann, Probabilistic Graphical Models : Principles and Techniques, MIT Press, 2009.
  4. D. Premack, G. Woodruff, Does the chimpanzee have a theory of mind?, Behav.Brain Sci. Vol.1, No. 4, pp.515-.526, 1978. https://doi.org/10.1017/S0140525X00076512
  5. A. Gopnick, A. Moore, Changing your views: How understanding visual perception can lead to a new theory of mind, Children''s Early Understanding of Mind, pp.157-181, 1994
  6. A. Woodward, J. Sommerville, J. Guajardo, How infants make sense of intentional action, Intention and Intentionality, MIT Press, pp.149-169, 2001.
  7. B. J. Grosz, C. L. Sidner, Plans for discourse, Intentions in Communication, Chap. 20, pp. 417-444, 1990.
  8. D. Avrahami-Zilberbrand, G. A. Kaminka, H. Zarosim, Fast and Complete Plan Recognition : Allowing for Duration, Interleaved Execution and Lossy Observations, Proceedings of IJCAI Workshop on Modeling Others from Observations, 2005.
  9. D. AarNo, D. Kragic, Motion Intention Recognition in Robot Assisted Applications, Robotics and AutoNomous Systems, Vol.56, pp.692-705, 2008. https://doi.org/10.1016/j.robot.2007.11.005
  10. P. Krauthausen, U. D. Hanebeck, Intention Recognition for Partial-Order Plans Using Dynamic Bayesian Networks, Proceedings of the 12th International Conference on Information Fusion, pp. 444-451 2009.
  11. S. J. Youn, K. W. Oh, Intention Recognition using a Graph Representation, World Academy of Science, Engineering and TechNology, Vol.25, pp. 13-18, 2007
  12. Aaron Beach, Michael Gartrell, Xinyu Xing, Richard Han, Qin Lv, Shivakant Mishra, Karim Seada, SocialFusion: Context-Aware Inference and Recommendation By Fusing Mobile, Sensor and Social Data, Technical Report, CU-CS-1059-09, University of Colorado, 2009.
  13. K. Ogawara, J. Takamtsu, H. Kimura, K. Ikeuchi, Modeling manipulation interactions by Hidden Markov Models, Proceedings of Int. Conf. Intelligent Robots and Systems, pp.1096-1101, 2002.
  14. 김진옥, 표정 HMM과 사후 확률을 이용한 얼굴 표정 인식 프레임워크, 한국정보과학회 논문집 : 컴퓨팅의 실제, 제 11호 3권, pp,284-291, 2005.
  15. N. Nguyen, D. Phung, S. Venkatesh, H. Bui, Learning and detecting activities from movement trajectories using the hierarchical hidden Markov model, Proceedings of IEEE Int. Conf. Computer Vision and Pattern Recognition, pp.955-960, 2005.
  16. U. Maurer, A. Smailagic, D. Siewiorek, M. Deisher, Activity recognition and monitoring using multiple sensors on different body positions, Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks, pp.99-102. 2006.
  17. P. Thompson, Weak models for insider threat detection, Proceedings of SPIE, Vol.5403, pp.40-48, 2004.
  18. T. Gu, Z. Wu, X. Tao, H. K. Pung, J. Lu, epSICAR: An Emerging Patterns based approach to sequential, interleaved and Concurrent Activity Recognition, Proceedings of the IEEE International Conference on Pervasive Computing and Communications, pp.1-9, 2009.
  19. T. Hu`ynh, M. Fritz, B. Schiele, Discovery of Activity Patterns using Topic Models, Proceedings of the Tenth International Conference on Ubiquitous Computing, pp.10-19, 2008.
  20. M. Harville, D. Li, Fast, Integrated Person Tracking and Activity Recognition with Plan-View Templates from a single Stereo Camera, IEEE Conf. on Computer Vision and Pattern Recognition, pp. 398-405, 2004.
  21. T. Duong, H. Bui, D. Phung, S. Venkatesh, Activity recognition and abNormality detection with the switching hidden semi-Markov model, Proceedings of IEEE Int. Conf. Computer Vision and Pattern Recognition, Vol.1, pp.838-845, 2005.
  22. L. E. Baum, T. Peterie, G. Souled, N. Weiss, A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains, Ann. Math. Stat, Vol.41, No.1, pp.164-171, 1970. https://doi.org/10.1214/aoms/1177697196
  23. L. R. Rabiner, A tutorial on hidden-Markov models and selected applications in speech recognition, Morgan Kaufmann Publishers, 1990.
  24. G. D. Forney Jr., The Viterbi algorithm, Proceedings of IEEE, Vol.61, No.3, pp.268-278, 1973. https://doi.org/10.1109/PROC.1973.9030
  25. 김진옥, 색상 조합 모델과 LM알고리즘을 이용한 얼굴 영역 검출, 한국정보처리학회논문지 B, 제14-B권, pp.255-262, 2007.
  26. 김진옥, 복잡한 배경의 비디오에서 에이전트 행동 추적 방법, 기초과학, 제 15권 2호, pp.47-54, 2011.
  27. N. Dalal, B. Triggs, Histogram of Oriented Gradients for Human Detection. Proceedings of International Conference on Pattern Recognition, pp.886-893, 2005.
  28. D. Comaniciu, V. Ramesh, P. Meer, Kernel-based object tracking, IEEE Trans. Pattern Anal. Mach. Intell. Vol.25, No.5, pp.564-77, 2003. https://doi.org/10.1109/TPAMI.2003.1195991
  29. D. Ramanan, D. Forsyth, A. Zisserman, Tracking People by Learning Their Appearances, IEEE Trans. Pattern Anal. Mach. Intell, Vol.29, No.1, pp.65-81, 2007. https://doi.org/10.1109/TPAMI.2007.250600

Cited by

  1. Bio-mimetic Recognition of Action Sequence using Unsupervised Learning vol.15, pp.4, 2014, https://doi.org/10.7472/jksii.2014.15.4.09
  2. A Bio-Inspired Modeling of Visual Information Processing for Action Recognition vol.3, pp.8, 2014, https://doi.org/10.3745/KTSDE.2014.3.8.299
  3. BoF based Action Recognition using Spatio-Temporal 2D Descriptor vol.16, pp.3, 2015, https://doi.org/10.7472/jksii.2015.16.3.21