DOI QR코드

DOI QR Code

Aerosol Direct Radiative Forcing by Three Dimensional Observations from Passive- and Active- Satellite Sensors

수동형-능동형 위성센서 관측자료를 이용한 대기 에어러솔의 3차원 분포 및 복사강제 효과 산정

  • Lee, Kwon-Ho (Department of Satellite Geoinformatic Engineering, Kyungil University)
  • 이권호 (경일대학교 위성정보공학과)
  • Received : 2011.12.09
  • Accepted : 2012.03.19
  • Published : 2012.04.30

Abstract

Aerosol direct radiative forcing (ADRF) retrieval method was developed by combining data from passive and active satellite sensors. Aerosol optical thickness (AOT) retrieved form the Moderate Resolution Imaging Spectroradiometer (MODIS) as a passive visible sensor and aerosol vertical profile from to the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) as an active laser sensor were investigated an application possibility. Especially, space-born Light Detection and Ranging (Lidar) observation provides a specific knowledge of the optical properties of atmospheric aerosols with spatial, temporal, vertical, and spectral resolutions. On the basis of extensive radiative transfer modeling, it is demonstrated that the use of the aerosol vertical profiles is sensitive to the estimation of ADRF. Throughout the investigation of relationship between aerosol height and ADRF, mean change rates of ADRF per increasing of 1 km aerosol height are smaller at surface than top-of-atmosphere (TOA). As a case study, satellite data for the Asian dust day of March 31, 2007 were used to estimate ADRF. Resulting ADRF values were compared with those retrieved independently from MODIS only data. The absolute difference values are 1.27% at surface level and 4.73% at top of atmosphere (TOA).

Keywords

References

  1. Ackerman, A.S., O.B. Toon, D.E. Stevens, A.J. Heymsfield, V. Ramanathan, and E.J. Welton (2000) Reduction of tropical cloudiness by soot, Science, 288, 1042- 1047. https://doi.org/10.1126/science.288.5468.1042
  2. Albrecht, B.A. (1989) Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227-1230. https://doi.org/10.1126/science.245.4923.1227
  3. Bush, B.C. and F.P.J. Valero (2003) Surface aerosol radiative forcing at Gosan during the ACE Asia campaign, J. Geophys. Res., 108(D23), 8660, doi:10.1029/2002JD003233.
  4. Carlson, T.N. and S.G. Benjamin (1980) Radiative heating rates for Saharan dust, J. Atmos. Sci., 37, 193-213. https://doi.org/10.1175/1520-0469(1980)037<0193:RHRFSD>2.0.CO;2
  5. Claquin, T., M. Schulz, Y.J. Balkanski, and O. Boucher (1998) Uncertainties in assessing radiative forcing by mineral dust, Tellus B, 50, 491-505. https://doi.org/10.1034/j.1600-0889.1998.t01-2-00007.x
  6. Gong, W., Z. Zhu, P. Li, Q. Qin, Z. Hao, M. Liu, and Y. Ma (2006) Mobile aerosol Lidar for earth observation atmospheric correction, 2006 IEEE International Sensing Symposium Geoscience and Remote, 1126-1129, doi:10.1109/IGARSS.2006.291.
  7. Haywood, J.M. and V. Ramaswamy (1998) Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols, J. Geophys. Res., 103, 6043-6058. https://doi.org/10.1029/97JD03426
  8. Kim, S.-W., S. Berthier, J.-C. Raut, P. Chazette, F. Dulac, and S.-C. Yoon (2008) Validation of aerosol and cloud layer structures from the space-borne lidar CALIOP using a ground-based lidar in Seoul, Korea, Atmos. Chem. Phys., 8, 3705-3720, doi:10.5194/acp-8-3705-2008.
  9. Lee, B.-I., S.-C. Yoon, and Y. Kim (2008) Analysis of vertical profiles and optical characteristics of the Asian dust using ground-based measurements, Atmosphere, 18 (4), 287-297. (in Korean with English abstract)
  10. Lee, K.H. and Y.J. Kim (2010) Satellite remote sensing of Asian aerosols: a case study of clean, polluted and dust storm days, Atmos. Meas. Tech., 3, 1771-1784, doi:10.5194/amt-3-1771-2010.
  11. Lee, K.H., D.H. Lee, and Y.J. Kim (2006) MODIS application of MODIS satellite observation data for air quality forecast, Korean J. of Atmos. Environ., 22(6), 851-862. (in Korean with English abstract)
  12. Lee, K.H., J.E. Kim, Y.J. Kim, and J. Kim (2004) Impact of the smoke aerosol plume from Russian forest fires on the atmospheric environment over Korea during May 2003, Korean J. of Atmos. Environ., 20(5), 603-613. (in Korean with English abstract)
  13. Lee, K.H., Z. Li, M.S. Wong, J. Xin, Y. Wang, and F. Zhao (2007) Aerosol single scattering albedo estimated across China from a combination of ground and satellite measurements, J. of Geophys. Res., 112, D22S15, doi:10.1029/2007JD009077.
  14. Lee, K.H., Z. Li, Y.J. Kim, and A. Kokhanovsky (2009) Aerosol monitoring from satellite observations: a history of three decades, Atmospheric and Biological Environmental Monitoring, Y.J. Kim, U. Platt, M.B. Gu, H. Iwahashi (Eds.), Springer, doi:10.1007/978-1-4020-9674-7_2, 13-38.
  15. Levy, R.C., L.A. Remer, S. Mattoo, E.F. Vermote, and Y.J. Kaufman (2007) Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance, J. Geophys. Res., 112, D13211, doi:10.1029/2006JD007811.
  16. Li, Z., K.-H. Lee, Y. Wang, J. Xin, and W.-M. Hao (2010) First observation-based estimates of cloud-free aerosol radiative forcing across China, J. Geophys. Res., 115, D00K18, doi:10.1029/2009JD013306.
  17. Liao, H. and J.H. Seinfeild (1998), Radiative forcing by mineral dust aerosols: Sensitivity to key variables, J. Geophys. Res., 103(D24), 31637-31645. https://doi.org/10.1029/1998JD200036
  18. Meloni, D., A.D. Sarra, T.D. Iotio, and G. Fiocco (2005) Influence of the vertical profile of Saharan dust on the visible direct radiative forcing, J. Quant. Spectrosc. Radiat. T., 93, 497-413.
  19. Noh, Y.M., K.H. Lee, and H. Lee (2011) A retrieval of vertically- resolved Asian dust concentration from quartz channel measurements of Raman lidar, Korean J. of Atmos. Environ., 27(3), 326-336. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2011.27.3.326
  20. Remer, L.A., Y.J. Kaufman, D. Tanré, S. Mattoo, D.A. Chu, J.V. Martins, R.-R. Li, C. Ichoku, R.C. Levy, R.G. Kleidman, T.F. Eck, E. Vermote, and B.N. Holben (2005) The MODIS aerosol algorithm, products and validation, J. Atmos. Sci., 62, 947-973. https://doi.org/10.1175/JAS3385.1
  21. Ricchiazzi, P., S. Yang, C. Gautier, and D. Sowle (1998) SBDART: A research and teaching tool for plane parallel radiative transfer in the Earth's atmosphere, Bull. Am. Meteorol. Soc., 79, 2101-2114, doi:10.1175/1520-0477.
  22. Twomey, S. (1977) The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci., 34, 1149-1152. https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
  23. Wendisch, M., D. Müller, I. Mattis, and A. Ansmann (2006) Potential of lidar backscatter data to estimate solar aerosol radiative forcing, Appl. Opt., 45, 770-783. https://doi.org/10.1364/AO.45.000770
  24. Winker, D.M., W.H. Hunt, and M.J. McGill (2007) Initial performance assessment of CALIOP, Geophys. Res. Lett., 34, L19803, doi:10.1029/2007GL030135.
  25. Zhang, J.L. and S.A. Christopher (2003) Longwave radiative forcing of Saharan dust aerosols estimated from MODIS, MISR, CERES observations on Terra, Geophys. Res. Lett., 30, doi:10.1029/2003GL018479.

Cited by

  1. Three Dimensional Monitoring of the Asian Dust by the COMS/GOCI and CALIPSO Satellites Observation Data vol.29, pp.2, 2013, https://doi.org/10.5572/KOSAE.2013.29.2.199
  2. Monitoring and Forecasting the Eyjafjallajökull Volcanic Ash using Combination of Satellite and Trajectory Analysis vol.30, pp.2, 2014, https://doi.org/10.5572/KOSAE.2014.30.2.139
  3. 3-D Perspectives of Atmospheric Aerosol Optical Properties over Northeast Asia Using LIDAR on-board the CALIPSO satellite vol.30, pp.5, 2014, https://doi.org/10.7780/kjrs.2014.30.5.2
  4. Aerosol Optical Thickness Measurements from the Microtops-II Multi-wavelength Radiometer vol.32, pp.1, 2016, https://doi.org/10.5572/KOSAE.2016.32.1.057