DOI QR코드

DOI QR Code

Fabrication of Poly Seed Layer for Silicon Based Photovoltaics by Inversed Aluminum-Induced Crystallization

역 알루미늄 유도 결정화 공정을 이용한 실리콘 태양전지 다결정 시드층 생성

  • Choi, Seung-Ho (School of Materials Science and Engineering, Pusan National University) ;
  • Park, Chan-Su (School of Materials Science and Engineering, Pusan National University) ;
  • Kim, Shin-Ho (School of Materials Science and Engineering, Pusan National University) ;
  • Kim, Yang-Do (School of Materials Science and Engineering, Pusan National University)
  • Received : 2012.03.05
  • Accepted : 2012.03.30
  • Published : 2012.04.27

Abstract

The formation of high-quality polycrystalline silicon (poly-Si) on relatively low cost substrate has been an important issue in the development of thin film solar cells. Poly-Si seed layers were fabricated by an inverse aluminum-induced crystallization (I-AIC) process and the properties of the resulting layer were characterized. The I-AIC process has an advantage of being able to continue the epitaxial growth without an Al layer removing process. An amorphous Si precursor layer was deposited on Corning glass substrates by RF magnetron sputtering system with Ar plasma. Then, Al thin film was deposited by thermal evaporation. An $SiO_2$ diffusion barrier layer was formed between Si and Al layers to control the surface orientation of seed layer. The crystallinity of the poly-Si seed layer was analyzed by Raman spectroscopy and x-ray diffraction (XRD). The grain size and orientation of the poly-Si seed layer were determined by electron back scattering diffraction (EBSD) method. The prepared poly-Si seed layer showed high volume fraction of crystalline Si and <100> orientation. The diffusion barrier layer and processing temperature significantly affected the grain size and orientation of the poly Si seed layer. The shorter oxidation time and lower processing temperature led to a better orientation of the poly-Si seed layer. This study presents the formation mechanism of a poly seed layer by inverse aluminum-induced crystallization.

Keywords

References

  1. S. Gall, C. Becker, K. Y. Lee, T. Sontheimer and B. Rech, J. Cryst. Growth, 312, 1277 (2010). https://doi.org/10.1016/j.jcrysgro.2009.12.065
  2. J. Zhao, A. Wang, S. R. Wenham and M. A. Green, in Proceedings of the 13th European Photovoltaic Solar Energy Conference (Nice, France, 23-27 October 1995) p.1566.
  3. R. B. Bergmann, G. Oswald, M. Albrecht and V. Gross, Sol Energ. Mater. Sol. Cell., 46, 147 (1997). https://doi.org/10.1016/S0927-0248(97)00006-8
  4. K. Ishikawa, M. Ozawa, C. H. Oh and M. Matsumura, Jpn. J. Appl. Phys., 37, 731 (1998). https://doi.org/10.1143/JJAP.37.731
  5. R. B. Iverson and R. Reif, Mater. Lett., 5(10), 393 (1987). https://doi.org/10.1016/0167-577X(87)90047-4
  6. O. Nast, T. Puzzer, L. M. Koschier, A. B. Sproul and S. R. Wenham, Appl. Phys. Lett., 73(22), 3214 (1998). https://doi.org/10.1063/1.122722
  7. W. J. Hwang, I. S. Kang, S. K. Lim, B. I. Kim, J. M. Yang, C. W. Ahn and S. K. Hong, Kor. J. Mater. Res., 18(9), 507 (2008) (in Korean). https://doi.org/10.3740/MRSK.2008.18.9.507
  8. S. R. Herd, P. Chaudhari and M. H. Brodsky, J. Non-Cryst. Solids, 7, 309 (1972). https://doi.org/10.1016/0022-3093(72)90267-0
  9. B. Gorka, P. Dogan, I. Sieber, F. Fenske and S. Gall, Thin Solid Films, 515, 7643 (2007). https://doi.org/10.1016/j.tsf.2006.11.161
  10. P. Dogan, E. Rudigier, F. Fenske, K. Y. Lee, B. Gorka, B. Rau, E. Conrad and S. Gall, Thin Solid Films, 516, 6989 (2008). https://doi.org/10.1016/j.tsf.2007.12.082
  11. O. Tuzun, A. Slaoui, C. Maurice and S. Vallon, Appl. Phys. Mater. Sci. Process., 99(1), 53 (2010). https://doi.org/10.1007/s00339-009-5506-6
  12. E. Pihan, A. Focsa, A. Slaoui and C. Maurice, Thin Solid Films, 511-512, 15 (2006). https://doi.org/10.1016/j.tsf.2005.12.147
  13. D. Crespo, T. Pradell, N. Clavaguera and M. T. Clavaguera-Mora, Mater. Sci. Eng., 238, 160 (1997). https://doi.org/10.1016/S0921-5093(97)00446-2
  14. O. Nast and S. R. Wenham, J. Appl. Phys., 88, 124 (2000). https://doi.org/10.1063/1.373632
  15. Y. Wada and S. Nishimatsu, J. Electrochem. Soc., 125, 1499 (1978). https://doi.org/10.1149/1.2131703
  16. J. Schneiger, J. Kelin, M. Muske, A. Schöpke, S. Gall and W. Fuhs, in Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion (Osaka, Japan, May 2003) p.106.