DOI QR코드

DOI QR Code

PCB 파원이 내장된 금속 함체의 공진 특성 해석

Analysis of Resonant Characteristics for a Metallic Shielding Enclosure with a PCB Source

  • Cho, Byung-Doo (Department of Optical Solution, LG Innotek) ;
  • Kim, Ki-Chai (Department of Electrical Engineering, Yeungnam University)
  • 투고 : 2011.11.18
  • 심사 : 2012.02.27
  • 발행 : 2012.04.30

초록

본 논문에서는 함체 내부의 PCB에 있는 트레이스 파원에 의한 함체의 공진 특성 해석법을 제안하고 있다. 함체 내부의 전자계를 계산하기 위해 PCB 트레이스에 형성되는 전류 분포 및 PCB 유전체의 경계면에서 만족하는 경계면 전계 분포에 관한 연립 적분방정식을 유도하였으며, 연립 적분방정식의 해는 Galerkin의 모멘트 법으로 구하고 있다. 그 결과, 함체의 공진 특성은 실험 결과 및 HFSS 툴에 의한 시뮬레이션 결과와도 잘 일치하고 있으며, 함체의 공진 주파수는 PCB 트레이스의 위치에 의해 달라진다는 것을 확인하고 있다. 이론 해석의 타당성을 검증하기 위해 반사 계수의 이론치를 측정치와도 비교하고 있다.

This paper proposed the analysis method of the cavity resonance characteristics for a metallic enclosure with a PCB trace source. In order to calculation the electromagnetic fields inside the cavity, coupled integral equations for a current distribution on the PCB trace and an aperture electric field distribution on the boundary of the PCB dielectric are derived and solved by applying Galerkin's method of moments. The result show that the resonant characteristics of the metallic enclosure are fairly good agreement with the simulation(HFSS) and the measured results. The resonant frequencies of the metallic enclosure with the PCB trace are changed by the PCB trace location inside of the cavity. In order to check the validity of the theoretical analysis, the calculated return losses are compared with the measured results.

키워드

참고문헌

  1. M, Li, J. Nuebel, J. L. Drewniak, R. E. DuBroff, T. H. Hubing, and T. P. Van Doren, "EMI from cavity modes of shielding enclosures-FDTD modeling and measurements", IEEE Trans. Electromagnetic Compatibility, vol. 42, no. 1, pp. 29-38, Feb. 2000. https://doi.org/10.1109/15.831702
  2. W. Wallyn, F. Olyslager, E. Laermans, D. De Zutter, R. De Smedt, and N. Lietaert, "Fast evaluation of the shielding efficiency of rectangular shielding enclosure", 1999 IEEE international Symposium on Electromagnetic Compatibility, vol. 1, pp. 311-316, 1999.
  3. M. Li, K-P. Ma, J. L. Drewniak, T. H. Hubing, and T. P. Van Doren, "Numerical and experimental corroboration of an FDTD thin-slot model for slot near corners of shielding enclosure", IEEE Trans. Electromagnetic Compatibility, vol. 39, pp. 225-232, Aug. 1997. https://doi.org/10.1109/15.618050
  4. F. Olyslager, E. Laermans, D. De Zutter, S. Criel, R. De Smedt, N. Lietaert, and A. De Clercq, "Numerical and experimental study of the shielding effectiveness of a metallic enclosure", IEEE Trans. Electromagnetic Compatibility, vol. 41, pp. 202-213, Aug. 1999. https://doi.org/10.1109/15.784155
  5. Y. Hotta, Xiaohe Li, O. Hashimoto, and S. Nitta, "A study on suppression of cabinet resonance by means of the hybrid magnetic material", 2001 IEEE International Symposium on, vol. 2, pp. 713-718, 2001.
  6. Saha P. K. Dowling J., "Reliable prediction of EM radiation from a PCB at the design stage of electronic equipment", IEEE Trans. Electromagnetic Compatibility, vol. 40, no. 2, pp. 166-174, May 1998. https://doi.org/10.1109/15.673623
  7. R. F. Harrington, Field Computation by Moment Methods, IEEE Press, Chap. 4, 1993.
  8. C. A. Balanis, Engineering Electromagnetics, John Wiley & Sons, Chap. 8, 1989.
  9. D. M. Pozar, Microwave Engineering, Addison-Wesley, Chap. 3, 1990.