DOI QR코드

DOI QR Code

기판 집적형 도파관(SIW)과 Complementary Split Ring Resonator(CSRR)로 구현한 저위상 잡음 발진기 설계

Low-Phase Noise Oscillator Using Substrate Integrated Waveguide and Complementary Split Ring Resonator

  • 박우영 (중앙대학교 전자전기공학부) ;
  • 임성준 (중앙대학교 전자전기공학부)
  • Park, Woo-Young (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Lim, Sung-Joon (School of Electrical and Electronics Engineering, Chung-Ang University)
  • 투고 : 2011.12.13
  • 심사 : 2012.02.25
  • 발행 : 2012.04.30

초록

본 논문은 기판 직접형 도파관(SIW)에 complementary split ring resonator(CSRR)이 탑재된 저위상 잡음 발진기를 제안한다. SIW 캐비티의 unloaded Q-factor는 CSRR을 삽입하여 높아졌고, 그 값은 1960을 나타내고 있다. 높은 Q-factor를 나타내는 SIW 캐비티 공진기에 대한 이론적인 분석과 설계 과정이 제시되어 있으며, 설계된 회로가 11.3 dBm의 출력 파워와 1-MHz 오프셋에서 -127.9 dBc/Hz의 위상 잡음을 갖는 9.3 GHz의 신호를 발생시킴을 실험적으로 보여주고 있다.

A low phase-noise microwave oscillator is presented by a substrate integrated waveguide(SIW) loading a complementary split ring resonator(CSRR) in this paper. The unloaded $Q$-factor of the SIW cavity is increased by loading a complementary split ring resonator(CSRR) and its value exhibits 1960. It is theoretically and experimentally demonstrated that the proposed circuit generates 11.3 dBm of output power at 9.3 GHz and a phase-noise of -127.9 dBc/Hz at 1-MHz offset.

키워드

참고문헌

  1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena", IEEE Trans. Microw. Theory Tech., vol. 47, no. 11, pp. 2075-2084, Nov. 1999. https://doi.org/10.1109/22.798002
  2. F. Falcone, T. Lopetegi, J. D. Baena, R. Marques, F. Martin, and M. Sorolla, "Effective negative- $\varepsilon$ stopband microstrip lines based on complementary split ring resonators", IEEE Microw. Wireless Componon. Lett., vol. 14, no. 6, pp. 280-282, Jun. 2004. https://doi.org/10.1109/LMWC.2004.828029
  3. J. D. Baena, J. Bonache, F. Martin, R. Marques, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia, I. Gil, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines", IEEE Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 1451-1461, Apr. 2005. https://doi.org/10.1109/TMTT.2005.845211
  4. R. Marques, J. Martel, F. Mesa, and F. Medina, "Left-handed-media simulation and transmission of EM waves in subwavelength split ring resonator-loaded metallic waveguides", Phys. Rev. Lett., pp. 183901-183904, Oct. 2002.
  5. G. Kondratev, A. I. Smirnov, "Left-handed-media simulation and transmission of EM waves in subwavelength split ring resonator-loaded metallic waveguides", Phys. Rev. Lett., no. 24, pp. 249401-1, Dec. 2003.
  6. R. Marques, J. Martel, F. Mesa, and F. Medina, "Left-handed-media simulation and transmission of EM waves in subwavelength split ring resonatorloaded metallic waveguides", Phys. Rev. Lett., no. 24, pp. 249401-2, Dec. 2003.
  7. J. Esteban, C. C. Penalosa, J. E. Page, T. M. Martin- Guerrero, and E. Marquez-Segura, "Simulation of negative permittivity and negative permeability by means of evanescent waveguide modes-theory and experiment", IEEE Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 1506-1514, Apr. 2005. https://doi.org/10.1109/TMTT.2005.845194
  8. D. Deslandes, K. Wu, "Single-substrate integration technique of planar circuits and waveguide filters", IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 593-596, Feb. 2003. https://doi.org/10.1109/TMTT.2002.807820
  9. Y. Zhang, W. Hong, K. Wu, J. Chen, and H. Tang, "Novel substrate integrated waveguide cavity filters with defected ground structure", IEEE Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 1280-1287, Apr. 2005. https://doi.org/10.1109/TMTT.2005.845750
  10. Z. Hao, W. Hong, J. Chen, X. Chen, and K. Wu, "Compact super-wide bandpass substrate integrated waveguide(SIW) filters", IEEE Trans. Microw. Theory Tech., vol. 53, no. 9, pp. 2968-2977, Sep. 2005. https://doi.org/10.1109/TMTT.2005.854232
  11. J. H. Lee, N. Kidera, G. DeJean, S. Pinel, J. Laskar, and M. Tentzeris, "A V-band front-end with 3-D integrated cavity filters/duplexers and antenna in LTCC technologies", IEEE Trans. Microw. Theory Tech., vol. 54, no. 7, pp. 2925-2936, Jul. 2006. https://doi.org/10.1109/TMTT.2006.877440
  12. D. B. Leeson, "A simple model of feedback oscillator noise spectrum", Proc. IEEE, vol. 54, no. 2, pp. 329-330, Feb. 1966.
  13. Y. Komatsu, Y. Murakami, "Coupling coefficient between microstrip line and dielectric resonator", IEEE Trans. Microw. Theory and Tech., vol. MTT-31, pp. 34-40, Jan. 1983.
  14. M. E. Tobar, E. N. Ivanov, R. A. Woode, J. H. Searls, and A. G. Mann, "Low noise 9-GHz sapphire resonator-oscillator with thermoelectric temperature stabilization at 300 Kelvin", IEEE Microw. Guided Wave Lett., vol. 5, no. 4, pp. 108-110, Apr. 1995. https://doi.org/10.1109/75.372807
  15. L. -H. Hsieh, K. Chang, "High-efficiency piezoelectric- transducer tuned feedback microstrip ringresonator oscillators operating at high resonant frequencies", IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, pp. 1141-1145, Nov. 2003. https://doi.org/10.1109/TMTT.2003.809671
  16. C. -G. Hwang, J. -S. Lee, J. -H. Kim, N. -H. Myung, and J. -I. Song, "Simple K-band ring resonator VCO using fully automated laser-trimming", IEEE Microw. Wireless Compon. Lett., vol. 13, no. 6, pp. 229-231, Jun. 2003. https://doi.org/10.1109/LMWC.2003.814595
  17. C. G. Hwang, N. H. Myung, "Novel methos for phase noise reduction and harmonic suppression in a planar oscillator circuit based on split ring resonators", Asia-Pacific Microw. Conf., APMC 2006, pp. 619-622, Dec. 2006.
  18. Y. Cassivi, K. Wu, "Low cost microwave oscillator using substrate integrated waveguide cavity", IEEE Microw. Wireless Compon. Lett., vol. 13, no. 2, Feb. 2003.
  19. J. Xu, K. Wu, "A subharmonic self-oscillating mixer using SIW cavity for millimeter application", 2005 IEEE MTT-S International Microw. Symp. Dig., Jun. 2005.
  20. F. J. M. Farley, J. K. Vij, A. Kocot, U. M. S. Murthy, and M. Burgess, "Mechanicalload cell based on cavity-controlled microwave oscillator", IEEE Trans. Microw. Theory Tech., vol. 39, no. 9, pp. 1611-1616, Sep. 1991. https://doi.org/10.1109/22.83837