References
- 구자용, 최대우, 최민성 (2005). 스플라인을 이용한 신용평점화, <응용통계연구>, 1, 543-553.
- 하재환, 박창이 (2009). 선형판별분석에서의 변수 선택, Journal of the Korean Data Analysis Society, 11, 381-389.
- Breiman, L. (1996). Heuristics of instability and stabilization in model selection, Annals of Statistics, 24, 2350-2383. https://doi.org/10.1214/aos/1032181158
- Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American Statistical Association, 96, 1348-1360. https://doi.org/10.1198/016214501753382273
- Hand, D. J. and Adams, N. M. (2000). Defining attributes for scorecard construction in credit scoring, Journal of Applied Statistics, 27, 527-540. https://doi.org/10.1080/02664760050076371
- Hand, D. J. and Henley, W. E. (1997). Statistical classification methods in consumer credit scoring: A review, Journal of the Royal Statistical Society Series A, 160, 523-541. https://doi.org/10.1111/j.1467-985X.1997.00078.x
- Koo, J.-Y., Park, C. and Jhun, M. (2009). A classication spline machine for building a credit scorecard, Journal of Statistical Computation and Simulation, 79, 681-689. https://doi.org/10.1080/00949650701859577
- Kooperberg, C., Bose, S. and Stone, C. J. (1997). Polychotomous regression, Journal of the American Statistical Association, 92, 117-127. https://doi.org/10.1080/01621459.1997.10473608
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society Series B, 58, 267-288.
- Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables, Journal of Royal Statistical Society Series B, 68, 49-67. https://doi.org/10.1111/j.1467-9868.2005.00532.x
- Zou, H. (2006). The adaptive lasso and its oracle properties, Journal of the American Statistical Association, 101, 1418-1429. https://doi.org/10.1198/016214506000000735
Cited by
- Categorical Variable Selection in Naïve Bayes Classification vol.28, pp.3, 2015, https://doi.org/10.5351/KJAS.2015.28.3.407
- Fused least absolute shrinkage and selection operator for credit scoring vol.85, pp.11, 2015, https://doi.org/10.1080/00949655.2014.922685
- Developing the high risk group predictive model for student direct loan default using data mining vol.26, pp.6, 2015, https://doi.org/10.7465/jkdi.2015.26.6.1417
- Developing the credit risk scoring model for overdue student direct loan vol.27, pp.5, 2016, https://doi.org/10.7465/jkdi.2016.27.5.1293