DOI QR코드

DOI QR Code

Bioactivity behavior of Si and Mg ion-substituted biphasic calcium phosphate powders

Si 및 Mg 이온이 교환된 biphasic calcium phosphate 분말의 생체활성 거동

  • Kim, Tae-Wan (School of Materials Science Engineering, Pusan National University) ;
  • Kim, Dong-Hyun (School of Materials Science Engineering, Pusan National University) ;
  • Jin, Hyeong-Ho (School of Materials Science Engineering, Pusan National University) ;
  • Lee, Heon-Soo (Division of Electrical and Electronic Engineering, Daegu Technical University) ;
  • Park, Hong-Chae (School of Materials Science Engineering, Pusan National University) ;
  • Yoon, Seog-Young (School of Materials Science Engineering, Pusan National University)
  • Received : 2012.02.27
  • Accepted : 2012.03.30
  • Published : 2012.04.30

Abstract

The co-precipitation technique has been applied to synthesize biphasic calcium phosphate (BCP). $Ca(NO_3)_2{\cdot}4H_2O$, $(NH_4)_2HPO_4$, TEOS and $Mg(NO_3)_2{\cdot}6H_2O$ as the starting materials was used. After the heat treatment of powder crystalline phases HAp and ${\beta}$-TCP analysis showed a mixed phase. The overall spectra appear to have mainly two modes corresponding to characteristic $PO^{3-}_4$ and $OH^-$ groups. After immersion in Hanks' Balanced Salt Solution (HBSS) for 1 week a precipitation started to be formed with individual small granules on the specimen surface. An MTT assay indicated that ionic substituted BCP powders had no cytotoxic effects on MG-63 cells, and that they have good biocompatibility.

이온이 첨가된 BCP(biphasic calcium phosphate) 분말을 제조하기 위하여 $Ca(NO_3)_2{\cdot}4H_2O$, $(NH_4)_2HPO_4$를 출발 물질로 공침법(co-precipitation process)을 이용하여 합성하였다. Si-BCP 합성을 위하여 TEOS를 Mg-BCP 합성을 위해서는 $Mg(NO_3)_2{\cdot}6H_2O$를 사용하였다. 합성된 분말의 열처리 후 결정상을 분석한 결과 HAp와 ${\beta}$-TCP가 혼재된 상을 관찰할 수 있었다. 분광학적 분석에서도 인산칼슘의 $PO^{3-}_4$$OH^-$ 그룹에 해당하는 밴드도 관찰되었다. 이온이 첨가된 BCP 분말의 생체활성 거동을 평가하기 위하여 Hanks' Balanced Salt Solution(HBSS)에 침적시켜 시간에 따라 형상의 변화 및 결정상을 분석한 결과, 두 샘플 모두에서 빠른 표면 활성을 나타내었다. 세포 성장률 평가에서도 대조군에 비하여 세포성장률이 우수함을 관찰하였다.

Keywords

References

  1. K. de Groot, "Clinical applications of calcium phosphate biomaterials; A review", Ceram. Int. 19 (1993) 363. https://doi.org/10.1016/0272-8842(93)90050-2
  2. M. Jarcho, "Biological aspects of calcium phosphates: Properties and applications", Dent. Clin. North. Am. 30 (1986) 25.
  3. R.W. Bucholz, A. Carlton and R.E. Holmes, "Hydroxyapatite and tricalcium phosphate bone graft substitutes", Orthop. Clin. North. Am. 18 (1987) 323.
  4. L.L. Hench, "Bioceramics", J. Am. Ceram. Soc. 81 (1998) 1705.
  5. S. Yamada, D. Heyman, J.K. Bouler and G. Daculsi, "Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/$\beta$-tricalcium phosphate ratios", Biomaterials 18 (1997) 1037. https://doi.org/10.1016/S0142-9612(97)00036-7
  6. J.M. Bouler, R.Z. LeGeros and G. Daculsi, "Biphasic calcium phosphates: Influence of three synthesis parameters on the HA/$\beta$-TCP ratio", J. Biomed. Mater. Res. A 51 (2000) 680. https://doi.org/10.1002/1097-4636(20000915)51:4<680::AID-JBM16>3.0.CO;2-#
  7. S.G. Dahl, P. Allain, P.J. Marie, Y. Mauras, G. Boivin, P. Ammann, Y. Tsouderos, P.D. Delmas and C. Christiansen, "Incorporation and distribution of strontium in bone", Bone 28 (2001) 446. https://doi.org/10.1016/S8756-3282(01)00419-7
  8. R.S. Lee, M.V. Kayser and S.Y. Ali, "Calcium phosphate microcrystal deposition in the human intervertebral disc", J. Anat. 208 (2006) 13. https://doi.org/10.1111/j.1469-7580.2006.00504.x
  9. N.C. Blumenthal, F. Betts and A.S. Posner, "Precipitation of calcium phosphates from electrolyte solutions III. Radiometric studies of the kinetics of precipitation and aging of calcium phosphates", Calcif. Tissue. Int. 18 (1975) 81. https://doi.org/10.1007/BF02546228
  10. A. Bigi, G. Cojazzi, S. Panzavolta, A. Ripamonti, N. Roveri, M. Romanello, K. Noris Suarez and L. Moro, "Chemical and structural characterization of the mineral phase from cortical and trabecular bone", J. Inorg. Biochem. 68 (1997) 45. https://doi.org/10.1016/S0162-0134(97)00007-X
  11. R.Z. Le Geros, "Calcium phosphates in oral biology and medicine", Monogr. Oral. Sci. 15 (1991).
  12. I.R. Gibson, S.M. Best and W. Bonfield, "Chemical characterization of silicon-substituted hydroxyapatite", J. Biomed. Mater. Res. A. 44 (1999) 422. https://doi.org/10.1002/(SICI)1097-4636(19990315)44:4<422::AID-JBM8>3.0.CO;2-#
  13. N. Patel, S.M. Best, W. Bonfield, I.R. Gibson, K.A. Hing, E. Damien and P.A. Revell, "Novel bioresorbable and bioactive composites based on bioactive glass and polylactide foams for bone tissue engineering", J. Mater. Sci. Mater. Med. 13 (2002) 1199. https://doi.org/10.1023/A:1021114710076
  14. A.E. Porter, N. Patel, J.N. Skepper, S.M. Best and W. Bonfield, "Effect of sintered silicate-substituted hydroxyapatite on remodelling processes at the bone-implant interface", Biomaterials 25 (2004) 3303. https://doi.org/10.1016/j.biomaterials.2003.10.006
  15. C.W. Song, T.W. Kim, D.H. Kim, H.C. Park and S.Y. Yoon, "Synthesis and characterization of silicon ion substituted biphasic calcium phosphate", J. Kor. Cry. Grow. Cry. Tech. 20 (2010) 243. https://doi.org/10.6111/JKCGCT.2010.20.5.243
  16. K.J. Lilley, U. Gbureck, J.C. Knowles, D.F. Farrar and J.E. Barralet, "Cement from magnesium substituted hydroxyapatite", J. Mater. Sci. Mater. Med. 16 (2005) 455. https://doi.org/10.1007/s10856-005-6986-3
  17. W.L. Suchanek, K. Byrappa, P. Shuk, R.E. Riman, V.F. Janas and K.S. TenHuisen, "Effect of sintered silicatesubstituted hydroxyapatite on remodelling processes at the bone-implant interface", Biomaterilas 25 (2004) 4647. https://doi.org/10.1016/j.biomaterials.2003.12.008
  18. I. Cacciotti, A. Bianco, M. Lombardi and L. Montanaro, "Mg-substituted hydroxyapatite nanopowders: Synthesis, thermal stability and sintering behaviour", J. Eur. Ceram. Soc. 29 (2009) 2969. https://doi.org/10.1016/j.jeurceramsoc.2009.04.038
  19. H.S. Lee, T.W. Kim, D.H. Kim, H.C. Park and S.Y. Yoon, "Suitability evaluation of magnesium substituted biphasic calcium phosphates prepared by coprecipitation method", J. Kor. Cry. Grow. Cry. Tech. 20 (2010) 237. https://doi.org/10.6111/JKCGCT.2010.20.5.237
  20. I. Cacciotti and A. Bianco, "High thermally stable Mgsubstituted tricalcium phosphate via precipitation", Ceram. Intern. 37 (2011) 127. https://doi.org/10.1016/j.ceramint.2010.08.023
  21. S.R. Kim, J.H. Lee, Y.T. Kim, D.H. Riu, S.J. Jung, Y.J. Lee, S.C. Chung and Y.H. Kim, "Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors", Biomaterials 24 (2003) 1389. https://doi.org/10.1016/S0142-9612(02)00523-9
  22. I.R. Gibson, I. Rehman, S.M. Best and W. Bonfield, "Characterization of the transformation from calciumdeficient apatite to $\beta$-tricalcium phosphate", J. Mater. Sci. Mater. Med. 12 (2000) 799.
  23. J. Pena and M. Vallet-Regi, "Hydroxyapatite, tricalcium phosphate and biphasic materials prepared by a liquid mix technique", J. Eur. Ceram. Soc. 23 (2003) 1687. https://doi.org/10.1016/S0955-2219(02)00369-2
  24. A. Mortier, J. Lemaitre and P.G. Rouxhet, "Temperatureprogrammed characterization of synthetic calcium-deficient phosphate apatites", Thermochimica Acta 143 (1989) 265. https://doi.org/10.1016/0040-6031(89)85065-8
  25. S. Kannan, I.A.F. Lemos, J.H.G. Rocha and J.M.F. Ferreira, "Synthesis and characterization of magnesium substituted biphasic mixtures of controlled hydroxyapatite/ $\beta$-tricalcium phosphate ratios", J. Solid. State. Chem. 178 (2005) 3190. https://doi.org/10.1016/j.jssc.2005.08.003
  26. L.H. Long, L.D. Chen, S.Q. Bai, J. Chang and K.L. Lin, "Preparation of dense $\beta-CaSiO_{3}$ ceramic with high mechanical strength and HAp formation ability in simulated body fluid", J. Eur. Ceram. Soc. 26 (2006) 1701. https://doi.org/10.1016/j.jeurceramsoc.2005.03.247
  27. C.W. Song, T.W. Kim, D.H. Kim, H.H. Jin, K.H. Hwang, J.K. Lee, H.C. Park and S.Y. Yoon, "In situ synthesis of silicon-substituted biphasic calcium phosphate and their performance in vitro", J. Phys. Chem. solid. 73 (2012) 39. https://doi.org/10.1016/j.jpcs.2011.09.021

Cited by

  1. Synthesis and bioactivity evaluation of metal ion-substitution biphasic calcium phosphate for bone defect reconstruction vol.22, pp.6, 2012, https://doi.org/10.6111/JKCGCT.2012.22.6.279