DOI QR코드

DOI QR Code

돈피 젤라틴 효소분해물이 난소 적출쥐의 골밀도에 미치는 영향

Effect of Pig Skin Gelatin Hydrolysates on the Bone Mineral Density of Ovariectomized Rats

  • 박정은 (농촌진흥청 국립축산과학원) ;
  • 함준상 (농촌진흥청 국립축산과학원) ;
  • 김혜경 (한서대학교 식품생물공학과) ;
  • 이치호 (건국대학교 식품생물공학과) ;
  • 김동욱 (농촌진흥청 국립축산과학원) ;
  • 설국환 (농촌진흥청 국립축산과학원) ;
  • 오미화 (농촌진흥청 국립축산과학원) ;
  • 김동훈 (농촌진흥청 국립축산과학원) ;
  • 장애라 (강원대학교 동물식품응용과학과)
  • Park, Jeong-Eun (National Institute of Animal Science, RDA) ;
  • Ham, Jun-Sang (National Institute of Animal Science, RDA) ;
  • Kim, Hey-Kyung (Department of Food and Biotechnology, Hanseo University) ;
  • Lee, Chi-Ho (Department of Food Science Biotechnology of Animal Resources, Konkuk University) ;
  • Kim, Dong-Wook (National Institute of Animal Science, RDA) ;
  • Seol, Kuk-Hwan (National Institute of Animal Science, RDA) ;
  • Oh, Mi-Hwa (National Institute of Animal Science, RDA) ;
  • Kim, Dong-Hun (National Institute of Animal Science, RDA) ;
  • Jang, Ae-Ra (Department of Animal Products and Food Science, Kangwon National University)
  • 투고 : 2011.10.20
  • 심사 : 2012.04.13
  • 발행 : 2012.04.30

초록

본 연구에서는 난소 제거로 인위적으로 골다공증이 유발된 흰쥐를 대상으로 돼지껍질에서 추출한 젤라틴과 저분자 젤라틴 효소분해물 급여가 골밀도에 미치는 영향을 조사하였다. 실험군의 구성은 10주령의 암컷 총 6군으로 난소 적출을 시행 하지 않은 일반 대조군과 난소 적출한 대조군은 일반식이를 급여하였으며, 난소 적출한 실험쥐에 3kDa 이하의 저분자 젤라틴 효소분해물을 0.1, 0.8% 첨가하고, 고분자 젤라틴을 0.1과 0.8% 첨가하여 급여한 후 그 효과를 비교하였다. 체중 증가량은 GH0.1, GH0.8 및 G0.8 급여구에서 NC와 OC에 비해 유의적으로 증가하였으며 특히 GH0.1과 GH0.8처리군은 사료섭취량이 NC와 OC에 비해 증가하였으나 사료효율은 유의적인 차이를 보이지 않았다. 대퇴골의 골밀도는 GH0.8처리군이 OC군에 비해 높았으나(p<0.05) NC의 수준에는 미치지 못하였다. 혈중 총 콜레스테롤 함량은 처리군간의 유의적인 차이를 보이지 않았으나 젤라틴 급여군과 GH 급여군의 HDL-C은 OC군에 비해 유의적인 증가를 나타내었다. 혈중 alkaline phosphatase(ALP)와 osteocalcin은 각각 GH0.1과 GH0.8에서 유의적인 감소를 나타내었다(p<0.05). 간질환의 지표인 혈중 GOT와 GPT도 모든 처리구에서 OC에 비해 유의적으로 감소하였다. 따라서 본 연구결과 돼지껍질에서 분리한 저분자 젤라틴 효소분해물은 골밀도를 증진시키고 폐경기 여성의 골건강에 도움을 줄 수 있는 수용성 기능성 소재로 이용 가능성이 있을 것으로 기대되지만 젤라틴 급여구의 높은 단백질 함량으로 젤라틴 효소분해물의 효과가 미미하여 비교시 골밀도 증진 효과의 유의적인 차이가 없어 추후 적정농도 설정에 관한 연구가 추가되어야 할 것으로 판단된다.

This study was conducted to examine the effects of low molecular weight gelatin hydrolysates (GH, less than 3kDa), extracted from pig skin collagen on the bone metabolism of ovariectomized (OVX) rats. The rats in the experimental groups were randomly segregated into six different treatment groups such as 1) NC, the normal rat fed AIN 93 diet (basal diet) only; 2) OC, the OVX rat fed the basal diet only; 3) GH 0.1, the OVX rat fed the basal diet with 0.1% GH; 4) GH 0.8, the OVX rat fed the basal diet with 0.8% GH; 5) G 0.1, the OVX rat fed the basal diet with 0.1% gelatin; 6) G 0.8, the OVX rat fed the basal diet with 0.8% gelatin. Body weight gain in the GH 0.1, GH 0.8, and G 0.8 was significantly higher than those in the NC and OC. Feed intake of the GH 0.1 and GH 0.8 was higher than that of the NC and OC, while no significant difference was found in feed efficiency ratio (FER). BMD of the GH 0.8 was higher than that of the OC. However, gelatin hydrolysates and gelatin resulted in higher BMC level compare to the OC. Serum HDL-cholesterol of rat fed GH and gelatin was higher than that of OC (p<0.05). LDL-C of the GH 0.1 and the GH 0.8 tended to be less than that of OC. Serum alkaline phosphatase (ALP) of the GH 0.1 was lower than that of the OC. The serum of GH 0.8 showed lower osteocalcin value than the OC (p<0.05). In addition, GOT and GPT levels significantly decreased in all treatment groups. These results indicated that gelatin hydrolysates from pig skin gelatin hydrolysates enhanced BMD and serum biochemical parameters related to bone metabolism. Therefore, the gelatin hydrolysates could be used as a beneficial material to improve bone health.

키워드

참고문헌

  1. Anderson, J. J. B. (1999) Plant-based diets and bone health : nutritional implications. Am. J. Clin. Nutr. 70, 593-42.
  2. Chung, H. Y. (2008) Osteoporosis diagnosis and treatment 2007. Korean J. Soc. End. 23, 76-108. https://doi.org/10.3803/jkes.2008.23.2.76
  3. Duda, R. J. Jr., O'Brien, J. F., Katzmann, J. A., Peterson, J. M., Mann, K. G., and Riggs, B .L. (1988) Concurrent assays of circulating bone Gla-protein and bone alkaline phosphatase : effects of sex, age, and metabolic bone disease. J. Clin. Endocrinol. Metab. 66, 951-957. https://doi.org/10.1210/jcem-66-5-951
  4. Friedewald, W. T., Ley, R. I., and Fredrickson, D. S. (1972) Estimation of the concentration of low density lipoprotein cholesterol the preparative ultracentrifuge. Clin. Chem. 18, 499-502.
  5. Guillerminet, F., Beaupied, H., Fabien-Soule, V., Tome, D., Benhamou, C-L., Roux, C., and Blais, A. (2010) Hydrolyzed collagen improves bone metabolism and biomechanical parameters in ovariectomized mice : An in vitro and in vivo study. Bone 46, 827-834. https://doi.org/10.1016/j.bone.2009.10.035
  6. Jahng, J. S. (1994) Prevention and treatment of the osteoporotic fracture. Korean J. Soc. Bone Metab. 1, 147-155.
  7. Jerome, S. P., Gabrielle, L., and Raul, F. (1998) Identification of collagen fibrils in scleroderma skin. J. Invest. Dermatol. 90, 48-54.
  8. Kanis, J. A., Melton, L. J., Christiansen, C., Johnston, C. C., and Khaltaev, N. (1994) The diagnosis of osteoporosis. J. Bone. Min. Res. 9, 1137-1141.
  9. Kim, G. H., Jeon, Y. J., Byun, H. G., Lee, Y. S., Lee, E. H., and Kim, S. K. (1998) Effect of calcium compounds from oyster shell bound fish skin gelatin peptide in calcium deficient rats. Korean J. Fish. Soc. 32, 149-159
  10. Kim, H. S., Yoon, H. D., Seong, J. H., Lee, Y. G., Xie, C. L., Kim, S. H., and Choi, W. S. (2009) Effects of soluble collagen peptides extract derived from Mugil cephalus scale on the blood glucose and lipid metabolism in diabetic rats. Korean J. Life Sci. 19, 1794-1801. https://doi.org/10.5352/JLS.2009.19.12.1794
  11. Kim, J. W., Kim, D. K., Kim, M. J., and Kim, S. D. (2010) Extraction and bleaching of acid-and pepsin-soluble collagens from shark skin and muscle. Korean J. Food Preserv. 17, 91-99.
  12. Kim, S. J. (2003) Study on the relationship between osteoporosis-cause factor and bone mineral density, Biochemical Marker. Pukyong National University.
  13. Koo, Y. M., Kim, S. H., Kim, E. Y., Lee, H. S., Choi, H., Sohn, Y. J., Jung, H. S., and Sohn, N. W. (2008) Effects of Lycii Fructus on the ovariectomized osteoporosis of rats. Korean J. Oriental Med. 29, 144-154.
  14. Kwon, M. C., Kim, C. H., Kim, H. S., Abdul Qadir Syed., Hwang, B. Y., and Lee, H. Y. (2007) Anti-wrinkle activity of low molecular weight peptides derived. Korean J. Food Sci. Technol. 39, 625-629.
  15. Lane, J. M. and Nydick, M. (1999) Osteoporosis: Current modes of prevention and treatment. Am. J. Acad. Orthop. Surg. 7, 19-31. https://doi.org/10.5435/00124635-199901000-00003
  16. Lee, H. J. (2002) Review of biochemical bone metabolism marker's change in osteoporosis incidence factors. Korean J. Soc. Phys. Therapy 14, 213-220.
  17. Lee, J. W., Kim, H. J., Jhee, O. H., Won, H. D., Yu, Y. J., Lee, M. H., Kim, T. H., Om, A. S., and Kang, J. S. (2005) Effects of alternative medicine extract on bone mineral density, bone strength and biochemical markers of bone metabolism in ovariectomized rats. Korean J. Food Nutr. 18, 72-80.
  18. Lee, Y. A. and Kim, M. H. (2008) Effects of sea tangle extract on formation of collagen and collagen cross-link in ovariectomized rats. Korean J. Life Sci. 18, 1578-1583. https://doi.org/10.5352/JLS.2008.18.11.1578
  19. Lee, Y. B., Lee, H. J., Kim, K. S., Lee, J. Y., Nam, S. Y., Cheon, S. H., and Shon, H. S. (2004) Evaluation of the preventive effects of isoflavone extract on bone loss in ovariectomized rats. Biosci. Biotechnol. Biochem. 68, 1040-1045. https://doi.org/10.1271/bbb.68.1040
  20. Liu, D., Liang, L., Regenstein, J. M., and Zhou, P. (2012) Extraction and characterization of pepsin-solubilised collagen from fins, scales, skins, bones and swim bladders of bighead carp (Hypophthalmichthys nobilis). Food Chem. Doi:10.1016/j.foodchem.2012.02.032.
  21. Liu, G. and Peacock, M. (1998) Age-related changes in serum undercarboxylated osteocalcin and its relationships with bone density, bone quality, and hip fracture. Calcif. Tissue Int. 62, 286-289. https://doi.org/10.1007/s002239900432
  22. Maeda, M., Tani, S., Sano, A., and Fujioka, K. (1999) Microstructure and release characteristics of the mini pellet, a collagen-based drug delivery system for controlled release of protein drugs. J. Con. Release 62, 313-324. https://doi.org/10.1016/S0168-3659(99)00156-X
  23. Nomura, Y., Oohashi, K., Watanabe, M., and Kasugai, S. (2005) Increase in bone mineral density through oral administration of shark gelatin to ovariectomized rats. Nutrition 21, 1120-1126. https://doi.org/10.1016/j.nut.2005.03.007
  24. Nordin, B. E. C., Wishart, J. M., Clifton, P. M., McArthur, R., Scopacasa, F., Need, A. G., Morris, H. A., O'Loughlin, PD., and Horowitz, M. (2004) A longitudinal study of bonerelated biochemical changes at the menopause. J. Clin. Endocrinol. 61, 123-130. https://doi.org/10.1111/j.1365-2265.2004.02066.x
  25. Notelovitz, M. 1993. Osteoporosis: screening, prevention, and management. Fert. Ster. 59, 707-725. https://doi.org/10.1016/S0015-0282(16)55848-8
  26. Oh, K. W. (2008) Diabetes and osteoporosis. Korean J. Bone Metab. 15, 91-98.
  27. Park, S. S., Lee, H. J., Yoon, W. J., Kang, G. J., Yang, E. J., Kim, H. S., Choo, C. S., Kang, H. K., and Yoo, E. S. (2010) Effects of horse bone extracts on the induced postmenopausal osteoporosis in rats. Korean J. Pharmacogn. 41, 204-209.
  28. Park, Y. H., Yoon, S., Chung, S. Y., Yang, S. O., Yoo, T. M., Yang, J. S., and Kwon, D. J. (2001) The effect of isoflavone supplementation on bone metabolism in ovariectomized SD rats. Korean J. Food Sci. Nutr. 30, 657-666.
  29. Pei, M., Yu, C., and Qu, M. (2000) Expression of collagen type I, II, and III in loose body of osteoarthritis. J. Orthop. Sci. 5, 288-293. https://doi.org/10.1007/s007760050165
  30. Price, P. A., Parthemore, J. G., and Deftos, L. J. (1980) New biochemical marker for bone metabolism. Measurement by radioimmunoassay of bone GLA protein in the plasma of normal subjects and patients with bone disease. J. Clin. Invest. 66, 878-883. https://doi.org/10.1172/JCI109954
  31. Seguro, K. and Motoki, M. (1990) Functional properties of enzymatically phosphorylated soybean proteins. Agric. Biol. Chem. 54, 1271-1276. https://doi.org/10.1271/bbb1961.54.1271
  32. Wronski, L. (1995) Response of femoral neck to estrogen depletion and parathyroid hormone in age rats. J. Bone. 16, 551-557. https://doi.org/10.1016/8756-3282(95)00077-Q
  33. Yook, T. H., Bae, J. S., Kim, Y. J., Kim, D. K., Jang, I. K., and Lee, C. H. (2006) Effects of cervi pontotrichum cornu and Carthami semen on the experimental osteoporosis induced by ovariectomy in rats. Korean J. Oriental Phys Path. 20, 1226-1232.

피인용 문헌

  1. The Cooperative Effect of Genistein and Protein Hydrolysates on the Proliferation and Survival of Osteoblastic Cells (hFOB 1.19) vol.21, pp.11, 2016, https://doi.org/10.3390/molecules21111489
  2. Effect of Calcium Extracted from Salt-fermented Anchovy Engraulis japonicus on Osteoporosis in Ovariectomized SD-Rats vol.48, pp.4, 2015, https://doi.org/10.5657/KFAS.2015.0426
  3. In vitro responses of hFOB1.19 cells towards chum salmon (Oncorhynchus keta) skin gelatin hydrolysates in cell proliferation, cycle progression and apoptosis vol.5, pp.1, 2013, https://doi.org/10.1016/j.jff.2012.10.017
  4. Comparison of the Effects of Deer Antler, Old Antler, and Antler Glue on Osteoporosis in Ovariectomized Rats vol.35, pp.1, 2012, https://doi.org/10.13045/jar.2018.00031