References
- Grove WR. On voltaic series and the combination of gases by platinum. Philosophical Magazine and J Sci. 1839; (XIV): 127-130.
- Potter MC. Electrical effects accompanying the decomposition of organic compounds. Proc R Soc London Ser B 1911; 84: 260-276. https://doi.org/10.1098/rspb.1911.0073
- Cohen B. The bacterial culture as an electrical halfcell. J Bacteriol. 1931; 21: 18-19.
- Lewis K. Symposium on bioelectrochemistry of microorganisms: IV. Biochemical fuel cells. Bacteriol Rev. 1966; 30(1): 101-113.
- Allen RM, Bennetto HP. Microbial fuel cells: electricity production from carbohydrate. Appl Biochem Biotech. 1993; 39-40: 27-40. https://doi.org/10.1007/BF02918975
- You KS, Song YC. Application of microbial fuel cells to wastewater treatment. J KSEE 2009; 31(8): 575-584.
- Du Z, Li H, Gu T. A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv. 2007; 25: 464-482. https://doi.org/10.1016/j.biotechadv.2007.05.004
- Kim BH, Kim HJ, Hyun MS, Park DH. Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnolol. 1999; 9(2): 127-131.
- Kim BH, Park DH, Shin PK, Chang IS, Kim HJ. Mediator-less biofuel cell. U.S. 1999; Patent 5976719.
- Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends in Biotech. 2005; 23(6): 291-298. https://doi.org/10.1016/j.tibtech.2005.04.008
- Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. Microbial fuel cells: methodology and technology. Environ Sci Technol. 2006; 40(17): 5181-5192. https://doi.org/10.1021/es0605016
- Logan BE, Regan JM. Microbial fuel cells-challenges and applicatoins. Environ Sci Technol. 2006; 40(17): 5172-5180. https://doi.org/10.1021/es0627592
- Logan BE, Regan JM. Electricity-producing bacterial communities in microbial fuel cells. Trends in Biotech. 2006; 14(12): 512-518.
- Watanabe K. Recent development in microbial fuel cell technologies for sustainable bioenergy. J Biosci Bioeng. 2008; 106(6): 528-536. https://doi.org/10.1263/jbb.106.528
- Rozendal RA, Hamelers HVM, S, Rabaey K, Keller J, Buisman CJN. Towards practical implementation of bioelectrochemical wastewater treatment. Trends in Biotech. 2008; 26(8): 450-459. https://doi.org/10.1016/j.tibtech.2008.04.008
- Rismani-Yazdi H, Carver SM, Christy AD, Tuovinen OH. Cathodic limitations in microbial fuel cells: an overview. J Power Sources 2008; 180: 683-694. https://doi.org/10.1016/j.jpowsour.2008.02.074
- Pham TH, Aelterman P, Verstraete W. Bioanode performance in bioelectrochemical systems: recent improvements and prospects. Trends in Biotech. 2009; 27(3): 168-178. https://doi.org/10.1016/j.tibtech.2008.11.005
- Logan BE. Exoelectrogenic bacteria that power microbial fuel cells. Nat Reviews/Microbiol. 2009; 7: 375-381.
- Microbial Fuel Cells homepage. http://www.microbialfuelcell. org. 2012.
- Zhou M, Chi M, Luo J, He H, Jin T. An overview of electrode materials in microbial fuel cells. J Power Sources 2011; 196: 4427-4435. https://doi.org/10.1016/j.jpowsour.2011.01.012
- Song YC, Woo JH, You KS. Materials for microbial fuel cell: electrodes, separator and current collector. J KSEE 2009; 31(8): 693-704.
- Lee TH, Yu JC, Choi SJ. Microbial fuel cells using biocathodes. J KSEE 2009; 31(8): 593-600.
- Logan BE. Microbial fuel cells. John Wiely & Sons Inc., New York, 2008.
- Moon H, Chang IS. Internal resistances in microbial fuel cell and techniques for analysis of internal resistance. J KSEE 2009; 31(8): 585-592.
- Kim C, Cha J, Choi S, Yu H. Operational conditions and design factors of microbial fuel cell for practical application. J KSEE 2009; 31(9): 719-732.
- Reimers CE, Tender LM, Fertig S, Wang W. Harvesting energy from the marine sediment-water interface. Environ Sci Technol. 2001; 35(1): 192- 195. https://doi.org/10.1021/es001223s
- Tender LM, Reimers CE, Stecher HA, Holmes DE, Bond DR, Lowy DA, Pilobello K, Fertig SJ, Lovely DR. Harnessing microbially generated power on the seafloor. Na Biotechnol. 2002; 20(8): 821-825. https://doi.org/10.1038/nbt716
- Ringeisen BR, Henderson E, Wu PK, Pietron J, Ray R, Little B, Biffinger JC, Jones-Meehan JM. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol. 2006; 40(8): 2629-2634. https://doi.org/10.1021/es052254w
- Chang IS, Jang JK, Gil GC, Kim M, Kim HJ, Cho BW. Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens Bioelectron. 2004; 19: 607-613. https://doi.org/10.1016/S0956-5663(03)00272-0
- Kim BH, Chang IS, Gil GC, Park HS, Kim HJ. Novel BOD sensor using mediator-less microbial fuel cell. Biotechnol Lett. 2003; 25: 541-545. https://doi.org/10.1023/A:1022891231369
- Kang KH, Jang JK, Pham TH, Moon H, Chang IS, Kim BH. A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnol Lett. 2003; 25: 1357-1361. https://doi.org/10.1023/A:1024984521699
- Cha J, Choi S, Yu H, Kim H, Kim C. Directly apllicable microbial fuel cells in aerobic tank for wastewater treatment. Bioelectrochem. 2010; 78: 72-79. https://doi.org/10.1016/j.bioelechem.2009.07.009
- Tran HT, Kim DH, Oh SJ, Rasool K, Park DH, Zhang RH, Ahn DH. Nitrifying biocathode enables effective electricity generation and sustainable wastewater treatment with microbial fuel cell. Water Sci Technol. 2009; 59(9): 1803-1808. https://doi.org/10.2166/wst.2009.209
- Goldner BH, Otto LA, Canfield JH. Application of bacteriological processes to the generation of electrical power. Develop in Industrial Microbial. 1963; 4: 70-80.
- Shea C, Clauwaert P, Verstraete W, Nerenberg R. Adapting a denitrifying biocathode for perchlorate reduction. Water Sci Technol. 2008; 58(10): 1941- 1946. https://doi.org/10.2166/wst.2008.551
-
Aulenta F, Canosa A, Majone M, Panero S, Reale P, Rossetti S. Trichloroethene dechlorination and
$H_{2}$ charge utilization by a dechlorinating culture in a bioelectrochemical system. Environ Sci Technol. 2008; 42(16): 6185-6190. https://doi.org/10.1021/es800265b - Szczesny S, Jetzki S, Leonhardt S. Review of Current Actuator Suitability for Use in Medical Implants. Proc. the 28th IEEE EMBS Annual International Conference, New York City, USA, 2006; 5956-5959.
- Orhan S. Power sources for implantable medical devices. Device Technol Appl Electron. 2002; 18: 76-79.
- Drews J, Fehrmann G, Staub R, Wolf R. Primary batteries for implantable pacemakers and defibrillators. J Power Sources 2001; 97-98: 747-749. https://doi.org/10.1016/S0378-7753(01)00649-8
- Han Y, Yu C, Liu H. A microbial fuel cell as power supply for implantable medical devices. Biosens Bioelectron. 2010; 25: 2156-2160. https://doi.org/10.1016/j.bios.2010.02.014
- Du F, Li Z, Yang S, Xie B, Liu H. Electricity generation directly using human feces wastewater for life support system. Acta Astronaut. 2011; 68(9): 1537-1547. https://doi.org/10.1016/j.actaastro.2009.12.013
Cited by
- The Effect of Electrode Spacing and Size on the Performance of Soil Microbial Fuel Cells (SMFC) vol.36, pp.11, 2014, https://doi.org/10.4491/KSEE.2014.36.11.758