DOI QR코드

DOI QR Code

Microbial Fuel Cells: Principles and Applications to Environmental Health

미생물 연료전지의 원리 및 환경보건 분야로의 응용

  • Han, Sun-Kee (Department of Environmental Health, Korea National Open University)
  • 한선기 (한국방송통신대학교 환경보건학과)
  • Received : 2012.03.13
  • Accepted : 2012.03.30
  • Published : 2012.04.30

Abstract

The research on microbial fuel cells (MFCs) needs various knowledge of different fields such as electrochemistry, microbiology, environmental engineering, and material engineering. Although electrochemically active bacteria are very diverse, the performance of MFCs is affected primarily by the structure of the reactor system. Thus, the development in the system architecture is critical to lower internal resistance and increase power generation for commercialization. This paper summarizes the principles of MFCs and demonstrates the infinite potential of MFCs in various applications including wastewater treatment, biosensors, biohydrogen production, remote power sources, implantable medical devices, etc.

Keywords

References

  1. Grove WR. On voltaic series and the combination of gases by platinum. Philosophical Magazine and J Sci. 1839; (XIV): 127-130.
  2. Potter MC. Electrical effects accompanying the decomposition of organic compounds. Proc R Soc London Ser B 1911; 84: 260-276. https://doi.org/10.1098/rspb.1911.0073
  3. Cohen B. The bacterial culture as an electrical halfcell. J Bacteriol. 1931; 21: 18-19.
  4. Lewis K. Symposium on bioelectrochemistry of microorganisms: IV. Biochemical fuel cells. Bacteriol Rev. 1966; 30(1): 101-113.
  5. Allen RM, Bennetto HP. Microbial fuel cells: electricity production from carbohydrate. Appl Biochem Biotech. 1993; 39-40: 27-40. https://doi.org/10.1007/BF02918975
  6. You KS, Song YC. Application of microbial fuel cells to wastewater treatment. J KSEE 2009; 31(8): 575-584.
  7. Du Z, Li H, Gu T. A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv. 2007; 25: 464-482. https://doi.org/10.1016/j.biotechadv.2007.05.004
  8. Kim BH, Kim HJ, Hyun MS, Park DH. Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnolol. 1999; 9(2): 127-131.
  9. Kim BH, Park DH, Shin PK, Chang IS, Kim HJ. Mediator-less biofuel cell. U.S. 1999; Patent 5976719.
  10. Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends in Biotech. 2005; 23(6): 291-298. https://doi.org/10.1016/j.tibtech.2005.04.008
  11. Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. Microbial fuel cells: methodology and technology. Environ Sci Technol. 2006; 40(17): 5181-5192. https://doi.org/10.1021/es0605016
  12. Logan BE, Regan JM. Microbial fuel cells-challenges and applicatoins. Environ Sci Technol. 2006; 40(17): 5172-5180. https://doi.org/10.1021/es0627592
  13. Logan BE, Regan JM. Electricity-producing bacterial communities in microbial fuel cells. Trends in Biotech. 2006; 14(12): 512-518.
  14. Watanabe K. Recent development in microbial fuel cell technologies for sustainable bioenergy. J Biosci Bioeng. 2008; 106(6): 528-536. https://doi.org/10.1263/jbb.106.528
  15. Rozendal RA, Hamelers HVM, S, Rabaey K, Keller J, Buisman CJN. Towards practical implementation of bioelectrochemical wastewater treatment. Trends in Biotech. 2008; 26(8): 450-459. https://doi.org/10.1016/j.tibtech.2008.04.008
  16. Rismani-Yazdi H, Carver SM, Christy AD, Tuovinen OH. Cathodic limitations in microbial fuel cells: an overview. J Power Sources 2008; 180: 683-694. https://doi.org/10.1016/j.jpowsour.2008.02.074
  17. Pham TH, Aelterman P, Verstraete W. Bioanode performance in bioelectrochemical systems: recent improvements and prospects. Trends in Biotech. 2009; 27(3): 168-178. https://doi.org/10.1016/j.tibtech.2008.11.005
  18. Logan BE. Exoelectrogenic bacteria that power microbial fuel cells. Nat Reviews/Microbiol. 2009; 7: 375-381.
  19. Microbial Fuel Cells homepage. http://www.microbialfuelcell. org. 2012.
  20. Zhou M, Chi M, Luo J, He H, Jin T. An overview of electrode materials in microbial fuel cells. J Power Sources 2011; 196: 4427-4435. https://doi.org/10.1016/j.jpowsour.2011.01.012
  21. Song YC, Woo JH, You KS. Materials for microbial fuel cell: electrodes, separator and current collector. J KSEE 2009; 31(8): 693-704.
  22. Lee TH, Yu JC, Choi SJ. Microbial fuel cells using biocathodes. J KSEE 2009; 31(8): 593-600.
  23. Logan BE. Microbial fuel cells. John Wiely & Sons Inc., New York, 2008.
  24. Moon H, Chang IS. Internal resistances in microbial fuel cell and techniques for analysis of internal resistance. J KSEE 2009; 31(8): 585-592.
  25. Kim C, Cha J, Choi S, Yu H. Operational conditions and design factors of microbial fuel cell for practical application. J KSEE 2009; 31(9): 719-732.
  26. Reimers CE, Tender LM, Fertig S, Wang W. Harvesting energy from the marine sediment-water interface. Environ Sci Technol. 2001; 35(1): 192- 195. https://doi.org/10.1021/es001223s
  27. Tender LM, Reimers CE, Stecher HA, Holmes DE, Bond DR, Lowy DA, Pilobello K, Fertig SJ, Lovely DR. Harnessing microbially generated power on the seafloor. Na Biotechnol. 2002; 20(8): 821-825. https://doi.org/10.1038/nbt716
  28. Ringeisen BR, Henderson E, Wu PK, Pietron J, Ray R, Little B, Biffinger JC, Jones-Meehan JM. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol. 2006; 40(8): 2629-2634. https://doi.org/10.1021/es052254w
  29. Chang IS, Jang JK, Gil GC, Kim M, Kim HJ, Cho BW. Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens Bioelectron. 2004; 19: 607-613. https://doi.org/10.1016/S0956-5663(03)00272-0
  30. Kim BH, Chang IS, Gil GC, Park HS, Kim HJ. Novel BOD sensor using mediator-less microbial fuel cell. Biotechnol Lett. 2003; 25: 541-545. https://doi.org/10.1023/A:1022891231369
  31. Kang KH, Jang JK, Pham TH, Moon H, Chang IS, Kim BH. A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnol Lett. 2003; 25: 1357-1361. https://doi.org/10.1023/A:1024984521699
  32. Cha J, Choi S, Yu H, Kim H, Kim C. Directly apllicable microbial fuel cells in aerobic tank for wastewater treatment. Bioelectrochem. 2010; 78: 72-79. https://doi.org/10.1016/j.bioelechem.2009.07.009
  33. Tran HT, Kim DH, Oh SJ, Rasool K, Park DH, Zhang RH, Ahn DH. Nitrifying biocathode enables effective electricity generation and sustainable wastewater treatment with microbial fuel cell. Water Sci Technol. 2009; 59(9): 1803-1808. https://doi.org/10.2166/wst.2009.209
  34. Goldner BH, Otto LA, Canfield JH. Application of bacteriological processes to the generation of electrical power. Develop in Industrial Microbial. 1963; 4: 70-80.
  35. Shea C, Clauwaert P, Verstraete W, Nerenberg R. Adapting a denitrifying biocathode for perchlorate reduction. Water Sci Technol. 2008; 58(10): 1941- 1946. https://doi.org/10.2166/wst.2008.551
  36. Aulenta F, Canosa A, Majone M, Panero S, Reale P, Rossetti S. Trichloroethene dechlorination and $H_{2}$ charge utilization by a dechlorinating culture in a bioelectrochemical system. Environ Sci Technol. 2008; 42(16): 6185-6190. https://doi.org/10.1021/es800265b
  37. Szczesny S, Jetzki S, Leonhardt S. Review of Current Actuator Suitability for Use in Medical Implants. Proc. the 28th IEEE EMBS Annual International Conference, New York City, USA, 2006; 5956-5959.
  38. Orhan S. Power sources for implantable medical devices. Device Technol Appl Electron. 2002; 18: 76-79.
  39. Drews J, Fehrmann G, Staub R, Wolf R. Primary batteries for implantable pacemakers and defibrillators. J Power Sources 2001; 97-98: 747-749. https://doi.org/10.1016/S0378-7753(01)00649-8
  40. Han Y, Yu C, Liu H. A microbial fuel cell as power supply for implantable medical devices. Biosens Bioelectron. 2010; 25: 2156-2160. https://doi.org/10.1016/j.bios.2010.02.014
  41. Du F, Li Z, Yang S, Xie B, Liu H. Electricity generation directly using human feces wastewater for life support system. Acta Astronaut. 2011; 68(9): 1537-1547. https://doi.org/10.1016/j.actaastro.2009.12.013

Cited by

  1. The Effect of Electrode Spacing and Size on the Performance of Soil Microbial Fuel Cells (SMFC) vol.36, pp.11, 2014, https://doi.org/10.4491/KSEE.2014.36.11.758