DOI QR코드

DOI QR Code

Manufacturing of Micro Gas Bearing by Fe-Ni Nanopowder and Metal Mold Using LIGA

LIGA 금형몰드를 이용한 Fe-Ni계 나노분말의 초미세 가스베어링 제조

  • 손수정 (한국기계연구원 부설 재료연구소) ;
  • 조영상 (한국기계연구원 부설 재료연구소) ;
  • 김대종 ;
  • 김종현 (포항공대 가속기연구소) ;
  • 장석상 (포항공대 가속기연구소) ;
  • 최철진 (한국기계연구원 부설 재료연구소)
  • Received : 2012.02.09
  • Accepted : 2012.03.16
  • Published : 2012.04.28

Abstract

This paper describes the manufacturing process of tilting pad gas bearing with a diameter of 5 mm and a length of 0.5-1 mm for power MEMS (Micro Electomechanical Systems) applications. The bearing compacts with nanopowder feedstock were prepared by Ni-metal mold with 2-mold system using LIGA process. The effect of the manufacturing conditions on sintering properties of nanopowder gas bearing was investigated. In this work, Fe-45 wt%Ni nanopowder with an average diameter of 30-50 nm size was used as starting material. After mixing the nanopowder and the wax-based binders, the amount of powder was controlled to obtain the certain mixing ratio. The nanopowder bearing compacts were sintered with 1-2 hr holding time under hydrogen atmospheres and under temperatures of $600^{\circ}C$ to $1,000^{\circ}C$. Finally, the critical batch of mixed powder system was found to be 70% particle fraction in total volume. The maximum density of the sintered bearing specimen was about 94% of theoretical density.

Keywords

References

  1. A. Tirta, Y. Prasetyo, E. R. Baek, C. J. Choi and H. M. Lee: World Academy of Science, Eng. & Technol., 53 (2009) 275.
  2. H. M. Lee, C. J. Choi, J. G. Lee and D. Kim: Power- MEMS2008 + microEMS2008, (2008) 481.
  3. W. S. Lee, S. P. Kim, H. M. Lee, D. S. Bae and C. J. Choi: J. Kor. Powd. Inst., 14 (2007) 3 (Korean).
  4. C. K. Malda and V. Saile: Microelectronics J., 35 (2004) 131. https://doi.org/10.1016/j.mejo.2003.10.003
  5. J. W. Kim and D. R. Kim: J. Kor. Inst. Met. & Mater., 42 (2004) 760 (Korean).
  6. K. A. Khalil, B. Huang and Y. Li: J. Mater. Sci. Technol., 17 (2001) 490.
  7. Kh. Gheisari, S. Javadpour, J. T. Oh and M. Ghaffari: J. Alloys & Comp., 472 (2009) 416. https://doi.org/10.1016/j.jallcom.2008.04.074
  8. C. S. Youn, W. Y. Park, J. H. Yu and C. J. Choi: J. Kor. Inst. Met. & Mater., 42 (2004) 804 (Korean).
  9. C. S. Youn, W. Y. Park, J. H. Yu and C. J. Choi: J. Kor. Inst. Met. & Mater., 42 (2004) 810 (Korean).
  10. D. J. Kim, A. M. Rimpel, S. S. Chang and J. H. Kim: J. Eng. Gas Turbines & Power, 131 (2009).
  11. E. R. Baek, S. Supriadi, C. J. Choi, B. T. Lee and J. W. Lee: Mater. Sci. Forum 534-536 (2007) 349. https://doi.org/10.4028/www.scientific.net/MSF.534-536.349
  12. S. Supriadi, E. R. Baek, C. J. Choi and B. T. Lee: J. Mater. Process. Technol., 187-188 (2007) 270. https://doi.org/10.1016/j.jmatprotec.2006.11.157
  13. M. T. Zaky, F. S. Soliman and A. S. Farag: J. Mater. Process. Technol., 209 (2009) 5981. https://doi.org/10.1016/j.jmatprotec.2009.07.018
  14. B. H. Cha and J. S. Lee: J. Kor. Powd. Inst., 16 (2009) 342 (Korean). https://doi.org/10.4150/KPMI.2009.16.5.342
  15. K. A. Khalii, B. Huang and Y. Li: J. Mater. Sci. Technol., 17 (2001) 490.
  16. M. Imbaby and K. Jiang: Proceedings of the World Congress on Engineering 2009 (2009).
  17. S. Y. Lee: Ceramics International, 30 (2004) 579. https://doi.org/10.1016/j.ceramint.2003.09.009