KYUNGPOOK Math. J. 52(2012), 99-107 http://dx.doi.org/10.5666/KMJ.2012.52.1.99

On Completely $\rho\text{-}\mathrm{Irresolute}$ and Weakly $\rho\text{-}\mathrm{Irresolute}$ Functions

DEVAMANOHARAN CHITHARANJAN^{*} AND PIOUS MISSIER Post Graduate and Research Department of Mathematics, V. O. Chidambaram College, Thoothukudi-628 008, Tamil Nadu, India e-mail: kanchidev@gmail.com; spmissier@yahoo.com

ABSTRACT. The purpose of this paper is to introduce two new types of irresolute functions called, completely ρ -irresolute functions and weakly ρ -irresolute functions. We obtain their characterizations and their basic properties.

1. Introduction and preliminaries

Functions and of course irresolute functions give new path towards research. In 1972, Crossley and Hildebrand [2] introduced the notion of irresoluteness. Many different forms of irresolute functions have been introduced over the years, for example see [7,8,10]. Various interesting problems arise when one considers irresoluteness. Its importance is significant in various areas of mathematics and related sciences.

Recently, as generalization of closed sets, the notion of ρ -closed sets were introduced and this notion was further studied by the authors [3,4,5]. In this paper, We will continue the study of related irresolute functions with ρ -open sets. We introduce and characterize the concepts of completely ρ -irresolute functions and weakly ρ -irresolute functions.

Throughout this paper, spaces means topological spaces on which no separation axioms are assumed unless otherwise mentioned and $f: (X,\tau) \to (Y,\sigma)$ (or simply $f: X \to Y$) denotes a function f of a space (X,τ) into space (Y,σ) . Let A be a subset of a space X. The closure and the interior of A are denoted by Cl(A) and Int(A), respectively.

Definition 1.1. Let (X,τ) be a topological space. A subset A of the space X is said to be

- 1. preopen [17] if $A \subseteq int(cl(A))$ and preclosed [17] if $cl(int(A)) \subseteq A$.
- 2. semi-open [14] if $A \subseteq cl(int(A))$ and semi-closed [1] if $int(cl(A)) \subseteq A$.
- 3. regular open [21] if A=int(cl(A)) and regular closed [21] if A=cl(int(A)).

^{*} Corresponding Author.

Received March 12, 2011; accepted September 23, 2011.

²⁰¹⁰ Mathematics Subject Classification: $54C10,\,54C08,\,54C05.$

Key words and phrases: Topological spaces, ρ -open sets, ρ -irresolute functions.

⁹⁹

Definition 1.2([7]). Let (X,τ) be a topological space and $A \subseteq X$.

1. The pre-interior of A, denoted by pint(A), is the union of all preopen subsets of A.

2. The pre-closure of A, denoted by pcl(A), is the intersection of all preclosed sets containing A.

Definition 1.3. Let (X,τ) be a topological space. A subset $A \subseteq X$ is said to be

1. \hat{g} -closed [23] if cl(A) \subseteq U whenever A \subseteq U and U is semi open in X.

2. *g-closed [25] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} -open in X.

3. #g- semi closed (briefly #gs-closed)[24] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is *g-open in X.

4. \tilde{g} -closed set [12] if cl(A) \subseteq U whenever A \subseteq U and U is #gs-open in X.

5. ρ -closed set [3] if pcl(A) \subseteq Int(U) whenever A \subseteq U and U is \tilde{g} -open in X.

The complements of the above mentioned sets are called their respective open sets.

The family of all ρ -open subsets of (X,τ) is denoted by $\rho O(X)$. We set $\rho O(X,x) = \{ V \in \rho O(X) | x \in V \}$ for $x \in X$.

The intersection of all ρ -closed sets containing a set A in a space X is called the ρ -closure of A and is denoted by ρ -cl(A)[3].

Theorem 1.4([3]). Every preclosed subset of X is ρ -closed.

Lemma 1.5([3]). If A is a ρ -closed set then ρ -cl(A) = A. Converse need not be true.

Theorem 1.6([3]). A subset A of (X,τ) is regular open if A is both open and ρ -closed.

Definition 1.7. A space (X,τ) is called locally indiscrete space [18] if every open subset of X is closed.

Definition 1.8. A function $f: (X,\tau) \to (Y,\sigma)$ is called:

1. strongly continuous [13] if f $^{-1}(\mathrm{V})$ is both open and closed in X for each subset V of Y.

2. perfectly ρ -continuous [4] if f $^{-1}(V)$ is clopen in X for every ρ -closed (resp. ρ -open) subset V of Y.

3. ρ -irresolute [3] if f⁻¹(V) is ρ -closed (resp. ρ -open) in X for every ρ -closed (resp. ρ -open) subset V of Y.

4. contra- ρ -irresolute if f⁻¹(V) is ρ -open (resp. ρ -closed) in X for every ρ -closed (resp. ρ -open) subset V of Y.

2. Completely ρ -irresolute functions

Definition 2.1. A function $f: X \rightarrow Y$ is called completely ρ -irresolute if the inverse image of each ρ -open subset of Y is regular open in X.

Example 2.2. Let $X = \{a, b, c\} = Y$ with topologies $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ and

100

 $\sigma = \{\phi, \{a\}, \{c\}, \{c,a\}, Y\}$. Define $f : (X, \tau) \to (Y, \sigma)$ by f(a) = a; f(b) = f(c) = c. Then the function f is completely ρ -irresolute.

Theorem 2.3. Every strongly continuous function is completely ρ -irresolute.

Proof. Let V be ρ -open subset of Y. By hypothesis, f⁻¹(V) is both open and closed in X. Since f⁻¹(V) is preclosed and by Theorem 1.4, f⁻¹(V) is ρ -closed in X and also by Theorem 1.6, f⁻¹(V) is regular open in X. Hence f is completely ρ -irresolute.

The converse of the above Theorem need not be true in general as seen from the following example.

Example 2.4. Let $X = \{a,b,c,d\}$, $Y = \{a,b,c\}$ with topologies $\tau = \{\phi,\{b\},\{c\},\{b,c\}, X\}$ and $\sigma = \{\phi,\{c\},\{a\},\{c,a\},Y\}$. Define $f : (X,\tau) \to (Y,\sigma)$ by f(a) = f(b) = f(d) = b; f(c) = c is completely ρ -irresolute but not Strongly continuous.

Theorem 2.5. Every completely ρ -irresolute function on a locally indiscrete space is contra- ρ -irresolute.

Proof. Let V be ρ -open subset of Y. By hypothesis, f⁻¹(V) is regular open in X. Since X is a locally indiscrete space, f⁻¹(V) is closed and hence it is preclosed in X. Then by Theorem 1.4, f⁻¹(V) is ρ -closed in X and so f is contra- ρ -irresolute. \Box

The converse of the above Theorem need not be true in general as seen from the following example.

Example 2.6. Let $X = \{a, b, c\} = Y$ with topologies $\tau = \{\phi, \{a\}, \{b,c\}, X\}$ and $\sigma = \{\phi, \{a,b\}, Y\}$. Then the identity function $f : (X,\tau) \to (Y,\sigma)$ is contra- ρ -irresloute but not completely ρ -irresloute.

Theorem 2.7. The following statements are equivalent for a function $f: X \to Y$ (i) f is completely ρ -irresolute;

(ii) $f^{-1}(F)$ is regular closed in X for every ρ -closed set F of Y.

Proof. (i) \Rightarrow (ii): Let F be any ρ -closed set of Y. Then Y\F is ρ -open set in Y. By (i), f⁻¹(Y\F) = X - f⁻¹(F) is regular open in X. We have f⁻¹(F) is regular closed in X.

Converse is similar.

Lemma 2.8([5]). Let S be an open subset of a space (X, τ) . Then the following hold:

(i) If U is regular open in X, then so is $U \cap S$ in the subspace (S, τ_s) .

(ii) If $B \subseteq S$ is regular open in (S, τ_s) . then there exists a regular open set U in (X, τ) such that $B = U \cap S$.

Theorem 2.9. If $f: (X, \tau) \to (Y, \sigma)$ is a completely ρ -irresolute function and A is any open subset of X, then the restriction $f|_A : A \to Y$ is completely ρ -irresolute. *Proof.* Let F be a ρ -open subset of Y. By hypothesis, $f^{-1}(F)$ is regular open in X. Since A is open in X, it follows from the previous lemma that $(f |_A)^{-1}(F) = A \cap f^{-1}(F)$, which is regular open in A. Therefore, $f |_A$ is completely ρ -irresolute. \Box

Theorem 2.10. The following hold for function $f : (X,\tau) \to (Y,\sigma)$ and $g : (Y,\sigma) \to (Z,\eta)$:

(i) If f is completely ρ -irresolute and g is perfectly ρ -continuous, then gof is completely ρ -irresolute.

(ii) If f is completely ρ -irresolute and g is ρ -irresolute, then gof is completely ρ -irresolute.

(iii) If f is completely ρ -irresolute and g is strongly continuous functions, then $g\circ f$ is completely ρ -irresolute.

Proof. The proof of the theorem is obvious and hence omitted.

Definition 2.11. A space X is said to be ρ -connected [4] (resp. almost connected [9]) if there does not exist disjoint ρ -open (resp. regular open) sets A and B such that $A \cup B = X$.

Theorem 2.12. If $f: (X,\tau) \to (Y,\sigma)$ is completely ρ -irresolute surjective function and X is almost connected, then Y is ρ -connected.

Proof. Suppose that Y is not ρ -connected, Then there exist disjoint ρ -open sets A and B of Y such that $A \cup B = Y$. Since f is completely ρ -irresolute surjective, $f^{-1}(A)$ and $f^{-1}(B)$ are regular open sets in X. Moreover, $f^{-1}(A) \cup f^{-1}(B) = X$, $f^{-1}(A) \neq \phi$ and $f^{-1}(B) \neq \phi$. This shows that X is not almost connected, which is a contradiction to the assumption that X is almost connected. By contradiction, Y is ρ -connected.

Definition 2.13. A space X is said to be

(i) nearly compact [19, 20] if every regular open cover of X has a finite subcover;(ii) nearly Lindelof [9] if every cover of X by regular open sets has a countable subcover;

(iii) nearly countably compact [11] if every countable cover by regular open sets has a finite subcover;

(iv) ρ -compact [4] if every ρ -open cover of X has a finite subcover;

(v) countably ρ -compact if every ρ -open countable cover of X has a finite subcover;

(vi) ρ -Lindelof if every cover of X by ρ -open sets has a countable subcover.

Theorem 2.14. Let $f : (X, \tau) \to (Y, \sigma)$ be a completely ρ -irresolute surjective function. Then the following statement hold:

(i) If X is nearly compact, then Y is ρ -compact.

(ii) If X is nearly Lindelof, then Y is ρ -Lindelof.

(iii) If X is nearly countably compact, then Y is countably ρ -compact.

Proof. (i) Let $f : X \to Y$ be a completely ρ -irresolute function of nearly compact space X onto a space Y. Let $\{U_{\alpha}: \alpha \in \Delta\}$ be any ρ -open cover of Y. Then, $\{f^{-1}(U_{\alpha}): \alpha \in \Delta\}$ is a regular open cover of X. Since X is nearly compact, there exists a finite

subfamily, { $f^{-1}(U_{\alpha_i})|i=1,2,...,n$ } of { $f^{-1}(U_{\alpha}) : \alpha \in \Delta$ } which cover X. It follows that { $U_{\alpha_i} : i = 1,2,...,n$ } is a finite subfamily of { $U_{\alpha} : \alpha \in \Delta$ } which cover Y. Hence, space Y is a ρ -compact space.

The proof of other cases are similar.

Definition 2.15. A space (X, τ) is said to be:

(i) ρ -closed compact (resp. S-closed [22]) if every ρ -closed (resp. regular closed) cover of X has a finite subcover;

(ii) countably ρ -closed compact (resp. countably S-closed compact [6]) if every countable cover of X by ρ -closed (resp. regular closed) sets has a finite subcover;

(iii) ρ -closed Lindelof (resp.S-Lindelof [16]) if every cover of X by ρ -closed(resp. regular closed) sets has a countable subcover.

Theorem 2.16. Let $f: (X, \tau) \to (Y, \sigma)$ be a completely ρ -irresolute surjective function. Then the following statements hold:

(i) If X is S-closed, then Y is ρ -closed compact.

(ii) If X is S-Lindelof, then Y is ρ -closed Lindelof.

(iii) If X is countably S-closed-compact, then y is countably ρ -closed compact.

Proof. (i) Let $f : X \to Y$ be a completely ρ -irresolute surjective function. Let $\{U_{\alpha}: \alpha \in \Delta\}$ be any ρ -closed cover of Y. Then, by Theorem 2.7, $\{f^{-1}(U_{\alpha}): \alpha \in \Delta\}$ is a regular closed cover of X. Since X is S-closed, there exists a finite subfamily, $\{f^{-1}(U_{\alpha_i})|i=1,2,...,n\}$ of $\{f^{-1}(U_{\alpha}): \alpha \in \Delta\}$ which cover X. It follows that $\{U_{\alpha_i}: i=1,2,...,n\}$ is a finite subfamily of $\{U_{\alpha}: \alpha \in \Delta\}$ which cover Y. Hence, space Y is a ρ -closed compact space.

The proof of other cases are similar.

Definition 2.17. A space (X,τ) is said to be ρ -T₁(resp. r-T₁ [9]) if for each pair of distinct points x and y of X, there exist ρ -open (resp. regular open) sets U₁ and U₂ such that $x \in U_1$ and $y \in U_2$, $x \notin U_2$ and $y \notin U_1$.

Theorem 2.18. If $f: (X,\tau) \to (Y,\sigma)$ is completely ρ -irresolute injective function and Y is ρ -T₁, then X is r-T₁.

Proof. Let x, y be any distinct points of X. Since f is injective, we have $f(x) \neq f(y)$. Since Y is ρ -T₁, there exist ρ -open sets V and W in Y such that $f(x) \in V$, $f(y) \in W$, $f(x) \notin W$ and $f(y) \notin V$. Since f is completely ρ -irresolute, $f^{-1}(V)$ and $f^{-1}(W)$ are regular open sets in X such that $x \in f^{-1}(V)$, $y \in f^{-1}(W)$, $x \notin f^{-1}(W)$ and $y \notin f^{-1}(V)$. This shows that X is r-T₁. □

Definition 2.19. A space (X,τ) is said to be ρ -T₂ if for each pair of distinct points x and y in X, there exist disjoint ρ -open sets U₁ and U₂ in X such that $x \in U_1$ and $y \in U_2$.

Theorem 2.20. If $f: (X,\tau) \to (Y,\sigma)$ is completely ρ -irresolute injective function and Y is ρ -T₂, then X is T₂.

Proof. Let x, y be any distinct points of X. Since f is injective, we have $f(x) \neq f(y)$.

Since Y is ρ -T₂, there exist ρ -open sets V and W in Y such that $f(x) \in V$, $f(y) \in W$ and $V \cap W = \phi$. Since f is completely ρ -irresolute, $f^{-1}(V)$ and $f^{-1}(W)$ are regular open sets in X such that $x \in f^{-1}(V)$, $y \in f^{-1}(W)$ and $f^{-1}(V) \cap f^{-1}(W) = \phi$. This shows that X is T₂.

Definition 2.21. A function $f: X \to Y$ is called ρ^* -closed [5] if the image of each ρ -closed set of X is a ρ -closed set in Y.

Theorem 2.22. If a mapping $f : X \to Y$ is ρ^* -closed, then for each subset B of Y and each ρ -open set U of X containing $f^{-1}(B)$, there exists a ρ -open set V in Y containing B such that $f^{-1}(V) \subset U$.

Proof. Suppose that f is ρ^* -closed map. Let $B \subset Y$ and U be ρ -open set of X such that $f^{-1}(B) \subset U$. Since f is ρ^* -closed, $(f(U^c))^c = V$ is a ρ -open set in Y containing B such that $f^{-1}(V) \subset U$.

Definition 2.23. A space X is said to be strongly ρ -normal (resp. mildly ρ -normal) if for each pair of distinct ρ -closed (resp. regular closed) sets A and B of X, there exist disjoint ρ -open sets U and V such that $A \subset U$ and $B \subset V$.

Theorem 2.24. If $f: X \to Y$ is completely ρ -irresolute, ρ^* -closed function from a mildly ρ -normal space X onto a space Y, then Y is strongly ρ -normal.

Proof. Let A and B be two disjoint *ρ*-closed subsets of Y. Since f is completely *ρ*-irresolute, $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint regular closed subsets of X. Since X is mildly *ρ*-normal space, there exist disjoint *ρ* -open sets U and V in X such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$. Since f is *ρ**-closed, $f(X \setminus U)$ and $f(X \setminus V)$ are *ρ*-closed sets in Y. Then by Theorem 2.22, there exist *ρ*-open sets $G = Y \setminus f(X \setminus U)$ and H = $Y \setminus f(X \setminus V)$ containing A and B such that $f^{-1}(G) \subset U$ and $f^{-1}(H) \subset V$. Clearly, G and H are disjoint *ρ*-open subsets of Y. Hence, Y is strongly *ρ*-normal.

Definition 2.25. (i) A space X is said to be strongly ρ -regular if for each ρ -closed set F and each point $x \notin F$, there exists disjoint ρ -open sets U and V in X such that $x \in U$ and $F \subset V$.

(ii) A space X is said to be almost ρ -regular if for each regular closed subset F and each point $x \notin F$, there exists disjoint ρ -open sets U and V in X such that $x \in U$ and $F \subset V$.

Theorem 2.26. If f is a completely ρ -irresolute, ρ^* -closed injection of an almost ρ -regular space X onto a space Y, then Y is strongly ρ -regular space.

Proof. Let F be a ρ -closed subset of Y and let $y \notin F$. Then, $f^{-1}(F)$ is regular closed subset of X such that $f^{-1}(y) = x \notin f^{-1}(F)$. Since X is almost ρ -regular space, there exists disjoint ρ -open sets U and V in X such that $f^{-1}(y) \in U$ and $f^{-1}(F) \subset V$. Since f is ρ *-closed and by Theorem 2.22, there exist ρ -open sets $G = Y \setminus f(X \setminus U)$ such that $f^{-1}(G) \subset U$, $y \in G$ and $H = Y \setminus f(X \setminus V)$ such that $f^{-1}(H) \subset V$, $F \subset H$. Clearly, G and H are disjoint ρ -open subsets of Y. Hence, Y is strongly ρ -regular space.

3. Weakly ρ -irresolute functions

Definition 3.1. A function $f: X \to Y$ is said to be weakly ρ -irresolute if for each point $x \in X$ and each $V \in \rho O(Y, f(x))$, there exists a $U \in \rho O(X, x)$ such that $f(U) \subset \rho$ -cl(V).

Example 3.2. Let $X = \{a,b,c\} = Y$ with topologies $\tau = \{\phi,\{a,b\},X\}$ and $\sigma = \{\phi,\{a\},\{b\},\{a,b\},Y\}$. Then the identity function $f : (X,\tau) \to (Y,\sigma)$ is weakly ρ -irresloute.

It is evident that every ρ -irresolute function is weakly ρ -irresolute but the converse is not true.

Example 3.3. Let $X = Y = \{a,b,c\}$ with topologies $\tau = \{\phi,\{c\},\{b,c\},X\}$ and $\sigma = \{\phi,\{a\},\{b\},\{a,b\},Y\}$. Then the identity function $f : (X,\tau) \to (Y,\sigma)$ is clearly weakly ρ -irresolute but not ρ -irresolute. Observe that for the ρ -closed set $V = \{c\}$ in (Y,σ) , $f^{-1}(V) = \{c\}$ is not ρ -closed in (X,τ) .

Definition 3.4. A space (X,τ) is called a ρ -T_sspace [4] if every ρ -closed (resp. ρ -open) set is closed (resp. open).

Theorem 3.5. A function $f : X \to Y$ is weakly ρ -irresolute if the graph function, defined by g(x) = (x, f(x)) for each $x \in X$, is weakly ρ -irresolute.

Proof. Let *x* ∈ X and V ∈ ρ O(Y,f(*x*)). Then X × V is a *ρ*-open set of X × Y containing g(*x*). Since g is weakly *ρ*-irresolute, there exists U∈ ρ O(X,*x*) such that g(U)⊂ ρ -cl(X ×V)⊂X × ρ -cl(V). Therefore, we have f(U)⊂ ρ -cl(V). □

Lemma 3.6. A locally indiscrete ρ - T_s topological space is ρ - T_2 if and only if for each pair of distinct points $x, y \in X$, there exist $U \in \rho O(X, x)$ and $V \in \rho O(X, y)$ such that ρ - $cl(U) \cap \rho$ - $cl(V) = \phi$.

Proof. This follows immediately from the definitions of locally indiscrete ρ -T_s space and Lemma 1.5.

Theorem 3.7. If a locally indiscrete ρ - T_s space Y is ρ - T_2 space and $f: X \to Y$ is a weakly ρ -irresolute injection, then X is ρ - T_2 .

Proof. Let x, y be any two distinct points of X. Since f is injective, we have $f(x) \neq f(y)$. Since Y is locally indiscrete ρ -T_s and ρ -T₂ space, by Lemma 3.6 there exists $V \in \rho O(Y, f(x))$ and $W \in \rho O(Y, f(y))$ such that ρ -cl(V) $\cap \rho$ -cl(W) = ϕ . Since f is weakly ρ -irresolute, there exists $G \in \rho O(X, x)$ and $H \in \rho O(X, y)$ such that $f(G) \subset \rho$ -cl(V) and $f(H) \subset \rho$ -cl(W). Hence we obtain $G \cap H = \phi$. This shows that X is ρ -T₂. \Box

Definition 3.8. A function $f : X \to Y$ is said to have strongly ρ -closed graph if for each $(x,y) \in (X \times Y)$ -G(f), there exist $U \in \rho O(X,x)$ and $V \in \rho O(Y,y)$ such that $[\rho - cl(U) \times \rho - cl(V)] \cap G(f) = \phi$.

Theorem 3.9. If a function $f : X \to Y$ is weakly ρ -irresolute, injective and G(f) is strongly ρ -closed, then X is ρ -T₂.

Proof. Let x, y be a pair of distinct points of X. Since f is injective, $f(x) \neq f(y)$

and $(x,f(y))\notin G(f)$. Since G(f) is strongly ρ -closed, there exist $G\in\rho O(X,x)$ and $V\in\rho O(Y,f(y))$ such that $f(\rho\text{-cl}(G))\cap\rho\text{-cl}(V) = \phi$. Since f is weakly ρ -irresolute, there exists $H\in\rho O(X,y)$ such that $f(H)\subset\rho\text{-cl}(V)$. Hence we have $f(\rho\text{-cl}(G))\cap f(H) = \phi$; hence $G\cap H = \phi$. This shows that X is ρ -T₂.

4. Conclusion

The authors introduce the classes of completely ρ -irresolute functions and weakly ρ -irresolute functions. Properties of completely ρ -irresolute functions and weakly ρ -irresolute functions are investigated. In the literature, many topologists investigated several irresoluteness for some questions in topology.

References

- N. Biswas, Characterizations of semi-continuous functions, Atti. Accad. Naz. Lince. Rend. Cl Sci. Fis. Mat. Natur., 48(1970), 399-402.
- [2] S. G. Crossley and S. K. Hildebrand, Semi-topological properties, Fund. Math., 74(1972), 233-254.
- [3] C. Devamanoharan, S. Pious Missier and S. Jafari, On ρ-closed sets in topological spaces, (submitted).
- [4] C. Devamanoharan, S. Pious Missier and S. Jafari, On ρ-continuous functions in topological spaces, (submitted).
- [5] C. Devamanoharan, S. Pious Missier and S. Jafari, On ρ-homeomorphisms in topological spaces, (submitted).
- [6] K. Dlaska, N. Ergun and M. Ganster, *Countable S-closed spaces*, Math. Slovaca, 44(1994), 337-348.
- [7] E. Ekici, Completely p-irresolute functions, Analele Univ. de Vest din Timisoara, Seria Mat.-Inf., XLII, (2)(2004), 17-25.
- [8] E. Ekici and T. Noiri, On $\gamma \alpha$ -continuous functions, Demonstratio Mathematica, 4(2005), 943-951.
- [9] E. Ekici, Generalization of perfectly continuous, Regular set-connected and clopen functions, Acta. Math. Hungar., 107(3)(2005), 193-206.
- [10] E. Ekici and S. Jafari, On a weaker form of complete irresoluteness, Bol. Soc. Paran. Mat., 26(1-2)(2008), 81-87.
- [11] N. Ergun, On nearly paracompact spaces, Istanbul, Univ. Fen, Mec. Ser. A, 45(1980), 65-87.
- [12] S. Jafari, T. Noiri, N. Rajesh and M. L. Thivagar, Another generalization of closed sets, Kochi J. Math., 3(2008), 25-38.
- [13] N. Levine, Strong continuity in topological spaces, Amer. Math. Monthly, 67(1960), 269.

- [14] N. Levine, Semi-open sets, semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [15] P. E. Long and L. L. Herrington, Basic properties of regular-closed functions, Rend. Circ. Mat. Palermo, 27(1978), 20-28.
- [16] G. D. Maio, S-closed spaces, S-sets and S-continuous functions, Acad. Sci. Torino, 118(1984), 125-134.
- [17] A. S. Mashour, M. E. Abd El-Monsef and S. N. El-Deep, On precontinuous and weak precontinuous mappings, Proc. Math. phys. Soc. Egypt., 53(1982), 47-53.
- [18] M. Mrsevic, On pairwise R₀ and pairwise R₁ bitopological spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, **30**(78)(1986), 141-148.
- [19] T. Noiri and G. D. Maio, Properties of α-compact spaces, Rend. Circ. Mat. Palermo., Ser(II), (1998), 359-369.
- [20] M. K. Singal, A. R. Singal and A. Mathur, On nearly compact spaces, Boll. UMI, 4(1969), 702-710.
- [21] M. H. Stone, Application of the theory Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 375-381.
- [22] T. Thompson, S-closed spaces, Proc. Amer. Math. Soc., 60(1976), 335-338.
- [23] M. K. R. S. Veerakumar, ĝ-closed sets in topological spaces, Bull Allahabad. Soc., 18(2003), 99-112.
- [24] M. K. R. S. Veerakumar, #g-semi-closed sets in topological spaces, Antarctica J. Maths, 2(2)(2005), 201-202.
- [25] M. K. R. S. Veerakumar, Between g~-closed and g-closed sets, Antarctica J. Maths, 3(1)(2006), 43-65.