Projective Change between Two Finsler Spaces with (α, β) metric

Narasimhamurthy Senajui Kampalappa* and Vasantha Dogehalli MyLARAPPA
Department of Mathematics, Kuvempu University, Shankaraghatta - 577451, Shivamogga, Karnataka, India
e-mail : nmurthysk@gmail.com and dmvasantha@gmail.com

Abstract. In the present paper, we find the conditions to characterize projective change between two (α, β)-metrics, such as Matsumoto metric $L=\frac{\alpha^{2}}{\alpha-\beta}$ and Randers metric $\bar{L}=\bar{\alpha}+\bar{\beta}$ on a manifold with $\operatorname{dim} n>2$, where α and $\bar{\alpha}$ are two Riemannian metrics, β and $\bar{\beta}$ are two non-zero 1 -forms.

1. Introduction

The projective change between two Finsler spaces have been studied by many authors ([2], [5], [6], [8], [14]). An interesting result concerned with the theory of projective change was given by Rapscak's paper [11]. He proved the necessary and sufficient condition for projective change. In 1994, S. Bacso and M. Matsumoto [2] studied the projective change between Finsler spaces with (α, β)-metric. In 2008, H.S. Park and Y. Lee [8] studied projective changes between a Finsler space with (α, β)-metric and the associated Riemannian metric. The authors Z. Shen and Civi Yildirim [14] studied on a class of projectively flat metrics with constant flag curvature in 2008. In 2009, Ningwei Cui and Yi-Bing Shen [5] studied projective change between two classes of (α, β)-metrics.

In this paper, we find the relation between two Finsler spaces with Matsumoto metric $L=\frac{\alpha^{2}}{\alpha-\beta}$ and Randers metric $\bar{L}=\bar{\alpha}+\bar{\beta}$ respectively under projective change.

2. Preliminaries

The terminology and notations are referred to ([1], [3], [12]). Let $F^{n}=(M, L)$ be a Finsler space on a differential manifold M endowed with a fundamental function

[^0]$L(x, y)$. We use the following notations:
(a) $g_{i j}=\frac{1}{2} \dot{\partial}_{i} \dot{\partial}_{j} L^{2}, \quad \dot{\partial}_{i}=\frac{\partial}{\partial y^{i}}$,
(b) $C_{i j k}=\frac{1}{2} \dot{\partial}_{k} g_{i j}$,
(c) $h_{i j}=g_{i j}-l_{i} l_{j}$,
(d) $\gamma_{j k}^{i}=\frac{1}{2} g^{i r}\left(\partial_{j} g_{r k}+\partial_{k} g_{r j}-\partial_{r} g_{j k}\right)$,
(e) $G^{i}=\frac{1}{2} \gamma_{j k}^{i} y^{j} y^{k}, \quad G_{j}^{i}=\dot{\partial}_{j} G^{i}, \quad G_{j k}^{i}=\dot{\partial}_{k} G_{j}^{i}, \quad G_{j k l}^{i}=\dot{\partial}_{l} G_{j k}^{i}$.

The concept of (α, β)-metric $L(\alpha, \beta)$ was introduced in 1972 by M. Matsumoto and studied by many authors like ([4], [9], [10], [15], [16]). The Finsler space $F^{n}=$ (M, L) is said to have an (α, β)-metric if L is a positively homogeneous function of degree one in two variables $\alpha^{2}=a_{i j}(x) y^{i} y^{j}$ and $\beta=b_{i}(x) y^{i}$. A change $L \rightarrow \bar{L}$ of a Finsler metric on a same underlying manifold M is called projective if any geodesic in (M, L) remains to be a geodesic in (M, \bar{L}) and viceversa. We say that a Finsler metric is projectively related to another metric if they have the same geodesics as point sets. In Riemannian geometry, two Riemannian metrics α and $\bar{\alpha}$ are projectively related if and only if their spray coefficients have the relation [5]

$$
\begin{equation*}
G_{\alpha}^{i}=G_{\bar{\alpha}}^{i}+\lambda_{x^{k}} y^{k} y^{i} \tag{2.1}
\end{equation*}
$$

where $\lambda=\lambda(x)$ is a scalar function on the based manifold and $\left(x^{i}, y^{j}\right)$ denotes the local coordinates in the tangent bundle $T M$.

Two Finsler metrics F and \bar{F} are projectively related if and only if their spray coefficients have the relation [5]

$$
\begin{equation*}
G^{i}=\bar{G}^{i}+P(y) y^{i}, \tag{2.2}
\end{equation*}
$$

where $P(y)$ is a scalar function on $T M \backslash\{0\}$ and homogeneous of degree one in y. A Finsler metric is called a projectively flat metric if it is projectively related to a locally Minkowskian metric.

For a given Finsler metric $L=L(x, y)$, the geodesics of L satisfy the following ODEs:

$$
\frac{d^{2} x^{i}}{d t^{2}}+2 G^{i}\left(x, \frac{d x}{d t}\right)=0
$$

where $G^{i}=G^{i}(x, y)$ are called the geodesic coefficients, which are given by

$$
G^{i}=\frac{1}{4} g^{i l}\left\{\left[L^{2}\right]_{x^{m} y^{l}} y^{m}-\left[L^{2}\right]_{x^{l}}\right\}
$$

Let $\phi=\phi(s),|s|<b_{0}$, be a positive C^{∞} function satisfying the following

$$
\begin{equation*}
\phi(s)-s \phi^{\prime}(s)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}(s)>0, \quad\left(|s| \leq b<b_{0}\right) . \tag{2.3}
\end{equation*}
$$

If $\alpha=\sqrt{a_{i j} y^{i} y^{j}}$ is a Riemannian metric and $\beta=b_{i} y^{i}$ is 1-form satisfying $\left\|\beta_{x}\right\|_{\alpha}<b_{0}$ $\forall x \in M$, then $L=\phi(s), s=\beta / \alpha$, is called an (regular) (α, β)-metric. In this case, the fundamental form of the metric tensor induced by L is positive definite.

Let $\nabla \beta=b_{i \mid j} d x^{i} \otimes d x^{j}$ be covariant derivative of β with respect to α.
Denote

$$
r_{i j}=\frac{1}{2}\left(b_{i \mid j}+b_{j \mid i}\right), \quad s_{i j}=\frac{1}{2}\left(b_{i \mid j}-b_{j \mid i}\right)
$$

β is closed if and only if $s_{i j}=0$ [13]. Let $s_{j}=b^{i} s_{i j}, s_{j}^{i}=a^{i l} s_{l j}, s_{0}=s_{i} y^{i}, s_{0}^{i}=s_{j}^{i} y^{j}$ and $r_{00}=r_{i j} y^{i} y^{j}$.

The relation between the geodesic coefficients G^{i} of L and geodesic coefficients G_{α}^{i} of α is given by

$$
\begin{equation*}
G^{i}=G_{\alpha}^{i}+\alpha Q s_{0}^{i}+\left\{-2 Q \alpha s_{0}+r_{00}\right\}\left\{\Psi b^{i}+\Theta \alpha^{-1} y^{i}\right\} \tag{2.4}
\end{equation*}
$$

where

$$
\begin{aligned}
\Theta & =\frac{\phi \phi^{\prime}-s\left(\phi \phi^{\prime \prime}+\phi^{\prime} \phi^{\prime}\right)}{2 \phi\left(\left(\phi-s \phi^{\prime}\right)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}\right)} \\
Q & =\frac{\phi^{\prime}}{\phi-s \phi^{\prime}}, \\
\Psi & =\frac{1}{2} \frac{\phi^{\prime \prime}}{\left(\phi-s \phi^{\prime}\right)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}} .
\end{aligned}
$$

Definition 2.2([5]). Let

$$
\begin{equation*}
D_{j k l}^{i}=\frac{\partial^{3}}{\partial y^{j} \partial y^{k} \partial y^{l}}\left(G^{i}-\frac{1}{n+1} \frac{\partial G^{m}}{\partial y^{m}} y^{i}\right), \tag{2.5}
\end{equation*}
$$

where G^{i} are the spray coefficients of L. The tensor $D=D_{j k l}^{i} \partial_{i} \otimes d x^{j} \otimes d x^{k} \otimes d x^{l}$ is called the Douglas tensor. A Finsler metric is called Douglas metric if the Douglas tensor vanishes.

We know that the Douglas tensor is a projective invariant [7]. Note that the spray coefficients of a Riemannian metric are quadratic forms and one can see that the Douglas tensor vanishes form (2.5). This shows that Douglas tensor is a nonRiemannian quantity.

In the following, we use quantities with a bar to denote the corresponding quantities of the metric \bar{L}. Now, we compute the Douglas tensor of a general (α, β) metric.
Let

$$
\widehat{G}^{i}=G_{\alpha}^{i}+\alpha Q s_{0}^{i}+\Psi\left\{-2 Q \alpha s_{0}+r_{00}\right\} b^{i}
$$

Then (2.4) becomes

$$
G^{i}=\widehat{G}^{i}+\Theta\left\{-2 Q \alpha s_{0}+r_{00}\right\} \alpha^{-1} y^{i}
$$

Clearly, G^{i} and \widehat{G}^{i} are projective equivalent according to (2.2), they have the same Douglas tensor.
Let

$$
\begin{equation*}
T^{i}=\alpha Q s_{0}^{i}+\Psi\left\{-2 Q \alpha s_{0}+r_{00}\right\} b^{i} \tag{2.6}
\end{equation*}
$$

Then $\widehat{G}^{i}=G_{\alpha}^{i}+T^{i}$, thus

$$
\begin{align*}
D_{j k l}^{i} & =\widehat{D}_{j k l}^{i} \\
& =\frac{\partial^{3}}{\partial y^{j} \partial y^{k} \partial y^{l}}\left(G_{\alpha}^{i}-\frac{1}{n+1} \frac{\partial G_{\alpha}^{m}}{\partial y^{m}} y^{i}+T^{i}-\frac{1}{n+1} \frac{\partial T^{m}}{\partial y^{m}} y^{i}\right) \\
& =\frac{\partial^{3}}{\partial y^{j} \partial y^{k} \partial y^{l}}\left(T^{i}-\frac{1}{n+1} \frac{\partial T^{m}}{\partial y^{m}} y^{i}\right) \tag{2.7}
\end{align*}
$$

To simplify (2.7), we use the following identities

$$
\alpha_{y^{k}}=\alpha^{-1} y_{k}, \quad s_{y^{k}}=\alpha^{-2}\left(b_{k} \alpha-s y_{k}\right)
$$

where $y_{i}=a_{i l} y^{l}, \alpha_{y^{k}}=\frac{\partial \alpha}{\partial y^{k}}$. Then

$$
\begin{aligned}
{\left[\alpha Q s_{0}^{m}\right]_{y^{m}} } & =\alpha^{-1} y_{m} Q s_{0}^{m}+\alpha^{-2} Q^{\prime}\left[b_{m} \alpha^{2}-\beta y_{m}\right] s_{0}^{m} \\
& =Q^{\prime} s_{0}
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[\Psi\left(-2 Q \alpha s_{0}+r_{00}\right) b^{m}\right]_{y^{m}} } & =\Psi^{\prime} \alpha^{-1}\left(b^{2}-s^{2}\right)\left[r_{00}-2 Q \alpha s_{0}\right] \\
& +2 \Psi\left[r_{0}-Q^{\prime}\left(b^{2}-s^{2}\right) s_{0}-Q s s_{0}\right]
\end{aligned}
$$

where $r_{j}=b^{i} r_{i j}$ and $r_{0}=r_{i} y^{i}$. Thus from (2.6), we obtain

$$
\begin{align*}
T_{y^{m}}^{m} & =Q^{\prime} s_{0}+\Psi^{\prime} \alpha^{-1}\left(b^{2}-s^{2}\right)\left[r_{00}-2 Q \alpha s_{0}\right] \\
& +2 \Psi\left[r_{0}-Q^{\prime}\left(b^{2}-s^{2}\right) s_{0}-Q s s_{0}\right] . \tag{2.8}
\end{align*}
$$

Now, we assume that the (α, β)-metrics L and \bar{L} have the same Douglas tensor, i.e., $D_{j k l}^{i}=\bar{D}_{j k l}^{i}$. Thus from (2.5) and (2.7), we get

$$
\frac{\partial^{3}}{\partial y^{j} \partial y^{k} \partial y^{l}}\left(T^{i}-\bar{T}^{i}-\frac{1}{n+1}\left(T_{y^{m}}^{m}-\bar{T}_{y^{m}}^{m}\right) y^{i}\right)=0 .
$$

Then there exists a class of scalar functions $H_{j k}^{i}=H_{j k}^{i}(x)$, such that

$$
\begin{equation*}
H_{00}^{i}=T^{i}-\bar{T}^{i}-\frac{1}{n+1}\left(T_{y^{m}}^{m}-\bar{T}_{y^{m}}^{m}\right) y^{i} \tag{2.9}
\end{equation*}
$$

where $H_{00}^{i}=H_{j k}^{i} y^{j} y^{k}, T^{i}$ and $T_{y^{m}}^{m}$ are given by the relations (2.6) and (2.8) respectively.

3. Projective change between two Finsler spaces with (α, β)-metric

In this section, we find the projective relation between two (α, β)-metrics, i.e., Matsumoto metric $L=\frac{\alpha^{2}}{\alpha-\beta}$ and Randers metric $\bar{L}=\bar{\alpha}+\bar{\beta}$ on a same underlying manifold M of dimension $n>2$. For (α, β)-metric $L=\frac{\alpha^{2}}{\alpha-\beta}$, one can prove by (2.3) that L is a regular Finsler metric if and only if 1-form β satisfies the condition $\left\|\beta_{x}\right\|_{\alpha}<\frac{1}{2}$ for any $x \in M$. The geodesic coefficients are given by (2.4) with

$$
\begin{align*}
\theta & =\frac{1-4 s}{2\left(1+2 b^{2}-3 s\right)} \\
Q & =\frac{1}{1-2 s} \\
\Psi & =\frac{1}{1+2 b^{2}-3 s} \tag{3.1}
\end{align*}
$$

Substituting (3.1) in to (2.4), we get

$$
\begin{equation*}
G^{i}=G_{\alpha}^{i}+\frac{\alpha^{2} s_{0}^{i}}{\alpha-2 \beta}+\left[\frac{-2 \alpha^{2} s_{0}}{\alpha-2 \beta}+r_{00}\right]\left[\frac{2 \alpha^{2} b^{i}+(\alpha-4 \beta) y^{i}}{2 \alpha\left(\alpha+2 \alpha b^{2}-3 \beta\right)}\right] \tag{3.2}
\end{equation*}
$$

For Randers metric $\bar{L}=\bar{\alpha}+\bar{\beta}$, one can also prove by (2.3) that \bar{L} is a regular Finsler metric if and only if $\left\|\beta_{x}\right\|_{\alpha}<1$ for any $x \in M$. The geodesic coefficients are given by (2.4) with

$$
\begin{equation*}
\bar{\theta}=\frac{1}{2(1+s)}, \bar{Q}=1, \bar{\Psi}=0 \tag{3.3}
\end{equation*}
$$

First, we prove the following lemma:
Lemma 3.1. Let $L=\frac{\alpha^{2}}{\alpha-\beta}$ and $\bar{L}=\bar{\alpha}+\bar{\beta}$ be two (α, β)-metrics on a manifold M with dimension $n>2$. Then they have the same Douglas tensor if and only if both the metrics L and \bar{L} are Douglas metrics.
Proof. First, we prove the sufficient condition. Let L and \bar{L} be Douglas metrics and corresponding Douglas tensors be $D_{j k l}^{i}$ and $\bar{D}_{j k l}^{i}$. Then by the definition of Douglas metric, we have $D_{j k l}^{i}=0$ and $\bar{D}^{i}{ }_{j k l}=0$, i.e., both L and \bar{L} have same Douglas tensor. Next, we prove the necessary condition. If L and \bar{L} have the same Douglas tensor, then (2.9) holds. Substituting (3.1) and (3.3) in to (2.9), we obtain

$$
\begin{equation*}
H_{00}^{i}=\frac{A^{i} \alpha^{6}+B^{i} \alpha^{5}+C^{i} \alpha^{4}+D^{i} \alpha^{3}+E^{i} \alpha^{2}+F^{i} \alpha+H^{i}}{I \alpha^{5}+J \alpha^{4}+K \alpha^{3}+L \alpha^{2}+M \alpha}-\bar{\alpha} \bar{s}_{0}^{i} \tag{3.4}
\end{equation*}
$$

where

$$
\begin{align*}
A^{i}= & -\left(1+2 b^{2}\right)\left[2 b^{i} s_{0}-\left(1+2 b^{2}\right) s_{0}^{i}\right], \\
B^{i}= & \left(1+2 b^{2}\right)\left\{-4 \beta\left(2+b^{2}\right) s_{0}^{i}+b^{i} r_{00}-2 \lambda y^{i}\left[\left(1+2 b^{2}\right) s_{0}+r_{0}\right]\right\} \\
& +2\left(5+4 b^{2}\right)\left[b^{2} \lambda y^{i}+b^{i} \beta\right] s_{0}, \\
C^{i}= & 2 \beta\left(1+2 b^{2}\right)\left[2\left(3 \beta s_{0}^{i}-b^{i} r_{00}\right)+\lambda y^{i}\left(7 s_{0}+4 r_{0}\right)\right]+3\left[3 \beta^{2} s_{0}^{i}\right. \\
& \left.-\lambda y^{i}\left\{b^{2} r_{00}+2 \beta\left(4 b^{2} s_{0}-r_{0}\right)\right\}\right], \\
D^{i}= & -2 \beta\left[19 \beta^{2} s_{0}^{i}-8 b^{i} \beta\left(b^{2}+2\right) r_{00}+2 \lambda y^{i}\left(19 \beta s_{0}+24 \beta r_{0}\right.\right. \\
& \left.\left.+8 b^{2} \beta s_{0}-6 b^{2} r_{00}\right)\right], \\
E^{i}= & -3 \beta^{2}\left\{4 b^{i} \beta r_{00}+\lambda y^{i}\left[\left(4 b^{2}-1\right) r_{00}-4 \beta\left(3 s_{0}+2 r_{0}\right)\right]\right\}, \\
F^{i}= & -12 \lambda y^{i} \beta^{3} r_{00}, \\
H^{i}= & 12 \lambda y^{i} \beta^{4} r_{00}, \\
\lambda= & \frac{1}{n+1} \tag{3.5}
\end{align*}
$$

and

$$
\begin{aligned}
I & =\left(1+2 b^{2}\right)^{2} \\
J & =-2 \beta\left[5+2 b^{2}\left(7+4 b^{2}\right)\right] \\
K & =\beta^{2}\left[37+16 b^{2}\left(b^{2}+4\right)\right] \\
L & =-12 \beta^{3}\left(4 b^{2}+5\right) \\
M & =36 \beta^{4}
\end{aligned}
$$

Then (3.4) is equivalent to

$$
\begin{align*}
A^{i} \alpha^{6}+B^{i} \alpha^{5}+C^{i} \alpha^{4} & +D^{i} \alpha^{3}+E^{i} \alpha^{2}+F^{i} \alpha+H^{i} \\
& =\left(I \alpha^{5}+J \alpha^{4}+K \alpha^{3}+L \alpha^{2}+M \alpha\right)\left(H_{00}^{i}+\bar{\alpha} \bar{s}_{0}^{i}\right) \tag{3.7}
\end{align*}
$$

Replacing y^{i} in (3.7) by $-y^{i}$ yields

$$
\begin{align*}
-A^{i} \alpha^{6}+B^{i} \alpha^{5}-C^{i} \alpha^{4} & +D^{i} \alpha^{3}-E^{i} \alpha^{2}+F^{i} \alpha-H^{i} \\
& =\left(I \alpha^{5}-J \alpha^{4}+K \alpha^{3}-L \alpha^{2}+M \alpha\right)\left(H_{00}^{i}-\bar{\alpha} \bar{s}_{0}^{i}\right) \tag{3.8}
\end{align*}
$$

Subtracting (3.8) from (3.7), we obtain

$$
\begin{equation*}
A^{i} \alpha^{6}+C^{i} \alpha^{4}+E^{i} \alpha^{2}+H^{i}=H_{00}^{i} \alpha^{2}\left(J \alpha^{2}+L\right)+\alpha \bar{\alpha} \bar{s}_{0}^{i}\left(I \alpha^{4}+K \alpha^{2}+M\right) \tag{3.9}
\end{equation*}
$$

Now, we can study two cases for Riemannian metric.
Case (i): If $\bar{\alpha}=\mu(x) \alpha$, then (3.9) reduces to

$$
A^{i} \alpha^{6}+C^{i} \alpha^{4}+E^{i} \alpha^{2}+H^{i}=H_{00}^{i} \alpha^{2}\left(J \alpha^{2}+L\right)+\mu(x) \bar{s}_{0}^{i} \alpha^{2}\left(I \alpha^{4}+K \alpha^{2}+M\right)
$$

which is written as

$$
\begin{equation*}
H^{i}=\left[H_{00}^{i}\left(J \alpha^{2}+L\right)+\mu(x) \bar{s}_{0}^{i}\left(I \alpha^{4}+K \alpha^{2}+M\right)-A^{i} \alpha^{4}-C^{i} \alpha^{2}-E^{i}\right] \alpha^{2} \tag{3.10}
\end{equation*}
$$

From (3.10), we can see that H^{i} has the factor α^{2}, i.e., $12 \lambda y^{i} r_{00} \beta^{4}$ has the factor α^{2}. Since β^{2} has no factor α^{2}, the only possibility is that βr_{00} has the factor α^{2}. Then for each i there exists a scalar function $\tau^{i}=\tau(x)$ such that $\beta r_{00}=\tau^{i} \alpha^{2}$ which is equivalent to $b_{j} r_{0 k}+b_{k} r_{0 j}=2 \tau^{i} \alpha_{j k}$.
When $n>2$ and we assume that $\tau^{i} \neq 0$, then

$$
\begin{align*}
2 & \geq \operatorname{rank}\left(b_{j} r_{0 k}\right)+\operatorname{rank}\left(b_{k} r_{0 j}\right) \\
& >\operatorname{rank}\left(b_{j} r_{0 k}+b_{k} r_{0 j}\right) \\
& =\operatorname{rank}\left(2 \tau^{i} \alpha_{j k}\right)>2, \tag{3.11}
\end{align*}
$$

which is impossible unless $\tau^{i}=0$. Then $\beta r_{00}=0$. Since $\beta \neq 0$, we have $r_{00}=0$, implies that $b_{i \mid j}=0$.
Case (ii): If $\bar{\alpha} \neq \mu(x) \alpha$, from (3.9), H^{i} has the factor α, i.e., $12 \lambda y^{i} r_{00} \beta^{4}$ has the factor α. Note that β^{2} has no factor α. Then the only possibility is that βr_{00} has the factor α^{2}. As the similar reason in case (i), we have $b_{i \mid j}=0$ when $n>2$.
It is well known that Matsumoto metric $L=\frac{\alpha^{2}}{\alpha-\beta}$ is a Douglas metric if and only if $b_{i \mid j}=0[7]$. Thus L is a Douglas metric. Since L is projectively related to \bar{L}, then both L and \bar{L} are Douglas metrics.
Now, we prove the following main theorem:
Theorem 3.1. The Finsler metric $L=\frac{\alpha^{2}}{\alpha-\beta}$ is projectively related to $\bar{L}=\bar{\alpha}+\bar{\beta}$ if and only if the following conditions are satisfied

$$
\begin{align*}
& G_{\alpha}^{i}=G_{\bar{\alpha}}^{i}+P y^{i}, \\
& b_{i \mid j}=0 \\
& d \bar{\beta}=0 \tag{3.12}
\end{align*}
$$

where $b=\|\beta\|_{\alpha}, b_{i \mid j}$ denote the coefficients of the covariant derivatives of β with respect to α, P is a scalar function.
Proof. First, we prove the necessary condition. Since Douglas tensor is an invariant under projective changes between two Finsler metrics, if L is projectively related to \bar{L}, then they have the same Douglas tensor. According to Lemma 3.1, we obtain that both L and \bar{L} are Douglas metrics.
We know that Randers metric $\bar{L}=\bar{\alpha}+\bar{\beta}$ is a Douglas metric if and only if $\bar{\beta}$ is closed [5], i.e.,

$$
\begin{equation*}
d \bar{\beta}=0 \tag{3.13}
\end{equation*}
$$

and $L=\frac{\alpha^{2}}{\alpha-\beta}$ is a Douglas metric if and only if

$$
\begin{equation*}
b_{i \mid j}=0 \tag{3.14}
\end{equation*}
$$

where $b_{i \mid j}$ denote the coefficients of the covariant derivatives of $\beta=b_{i} y^{i}$ with respect to α. In this case, β is closed. Since β is closed, $s_{i j}=0$, implies that $b_{i \mid j}=b_{j \mid i}$. Thus $s_{0}^{i}=0, s_{0}=0$.
By using (3.14), we have $r_{00}=r_{i j} y^{i} y^{j}=0$. Substituting all these in (3.2), we obtain

$$
\begin{equation*}
G^{i}=G_{\alpha}^{i} \tag{3.15}
\end{equation*}
$$

Since L is projective to $\bar{L}=\bar{\alpha}+\bar{\beta}$, this is a Randers change between L and $\bar{\alpha}$. Noticing that $\bar{\beta}$ is closed, then L is projectively related to $\bar{\alpha}$. Thus there is a scalar function $P=P(y)$ on $T M \backslash\{0\}$ such that

$$
\begin{equation*}
G^{i}=G_{\bar{\alpha}}^{i}+P y^{i} \tag{3.16}
\end{equation*}
$$

From (3.15) and (3.16), we have

$$
\begin{equation*}
G_{\alpha}^{i}=G_{\bar{\alpha}}^{i}+P y^{i} \tag{3.17}
\end{equation*}
$$

(3.13) and (3.14) together with (3.17) complete the proof of the necessity.

For the sufficiency, noticing that $\bar{\beta}$ is closed, it suffices to prove that L is projectively related to $\bar{\alpha}$. Substituting (3.14) in to (3.2) yields (3.15).
From (3.15) and (3.17), we have

$$
G^{i}=G_{\bar{\alpha}}^{i}+P y^{i}
$$

i.e., L is projectively related to $\bar{\alpha}$.

From the above theorem, immediately we get the following corollaries.
Corollary 3.1. The Finsler metric $L=\frac{\alpha^{2}}{\alpha-\beta}$ is projectively related to $\bar{L}=\bar{\alpha}+\bar{\beta}$ if and only if they are Douglas metrics and the spray coefficients of α and $\bar{\alpha}$ have the following relation

$$
G_{\alpha}^{i}=G_{\bar{\alpha}}^{i}+P y^{i},
$$

where P is a scalar function.
Further, we assume that the Randers metric $\bar{L}=\bar{\alpha}+\bar{\beta}$ is locally Minkowskian, where $\bar{\alpha}$ is an Euclidean metric and $\bar{\beta}=\bar{b} y^{i}$ is a one form with $\overline{b_{i}}=$ constants. Then (3.12) can be written as

$$
\begin{align*}
G_{\alpha}^{i} & =P y^{i}, \\
b_{i \mid j} & =0 . \tag{3.18}
\end{align*}
$$

Thus, we state
Corollary 3.2. The Finsler metric $L=\frac{\alpha^{2}}{\alpha-\beta}$ is projectively related to \bar{L} if and only if L is projectively flat, in other words, L is projectively flat if and only if (3.18) holds.

References

[1] P. L. Antonelli, R. S. Ingarden and M. Matsumoto, The Theory of sprays and Finsler spaces with applications in Physics and Biology, Kluwer academic publishers, London, 1985.
[2] S. Bacso and M. Matsumoto, Projective change between Finsler spaces with (α, β) metric, Tensor N.S., 55(1994), 252-257.
[3] M. Matsumoto, Foundations of Finsler geometry and special Finsler spaces, Kaiseisha press, Otsu, Saikawa, 1986.
[4] S. K. Narasimhamurthy and G. N. Latha Kumari, On a hypersurface of a special Finsler space with a metric $L=\alpha+\beta+\frac{\beta^{2}}{\alpha}$, ADJM, 9(1)(2010), 36-44.
[5] Ningwei Cui and Yi-Bing Shen, Projective change between two classes of (α, β) metrics, Diff. Geom. and its Applications, 27(2009), 566-573.
[6] H. S. Park and Il-Yong Lee, On projectively flat Finsler spaces with (α, β)-metric, Comm. Korean Math. Soc., 14(2)(1999), 373-383.
[7] H. S. Park and Il-Yong Lee, The Randers changes of Finsler spaces with (α, β)-metrics of Douglas type, J. Korean Math. Soc., 38(3)(2001), 503-521.
[8] H. S. Park and Y. Lee, Projective changes between a Finsler space with (α, β)-metric and the associated Riemannian metric, Canad. J. Math., 60(2008), 443-456.
[9] Pradeep Kumar, S. K. Narasimhamurthy, H. G. Nagaraja and S. T. Aveesh, On a special hypersurface of a Finsler space with (α, β)-metric, Tbilisi Mathematical Journal, 2(2009), 51-60.
[10] B. N. Prasad, B. N. Gupta and D. D. Singh, Conformal transformation in Finsler spaces with (α, β)-metric, Indian J. Pure and Appl. Math., 18(4)(1961), 290-301.
[11] A. Rapsak, Uber die bahntreuen Abbildungen metrisher Raume, Publ. Math. Debrecen., 8(1961), 285-290.
[12] H. Rund, The differential geometry of Finsler spaces, Springer-Verlag, Berlin, 1959.
[13] Z. Shen, On Landsberg (α, β)-metrics, 2006.
[14] Z. Shen and G. Civi Yildirim, On a class of projectively flat metrics with constant flag curvature, Canad. J. Math., 60(2008), 443-456.
[15] C. Shibata, On Finsler spaces with an (α, β)-metric, J. Hokkaido Univ. of Education, IIA, $\mathbf{3 5}(1984)$, 1-6.
[16] H. Shimada and S. V. Sabau, Introduction to Matsumoto metric, Nonlinear Analysis, 63(2005), e165-e168.

[^0]: * Corresponding Author.

 Received February 9, 2011; accepted April 25, 2011.
 2010 Mathematics Subject Classification: 53B40, 53C60, 58J60.
 Key words and phrases: Projective change, Matsumoto metric, Randers metric, Douglas metric, Locally Minkowski space.

