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Abstract. In the present paper, we find the conditions to characterize projective change

between two (α, β)-metrics, such as Matsumoto metric L = α2

α−β
and Randers metric

L̄ = ᾱ+ β̄ on a manifold with dim n > 2, where α and ᾱ are two Riemannian metrics, β

and β̄ are two non-zero 1-forms.

1. Introduction

The projective change between two Finsler spaces have been studied by many
authors ([2], [5], [6], [8], [14]). An interesting result concerned with the theory of
projective change was given by Rapscak’s paper [11]. He proved the necessary and
sufficient condition for projective change. In 1994, S. Bacso and M. Matsumoto [2]
studied the projective change between Finsler spaces with (α, β)-metric. In 2008,
H.S. Park and Y. Lee [8] studied projective changes between a Finsler space with
(α, β)-metric and the associated Riemannian metric. The authors Z. Shen and
Civi Yildirim [14] studied on a class of projectively flat metrics with constant flag
curvature in 2008. In 2009, Ningwei Cui and Yi-Bing Shen [5] studied projective
change between two classes of (α, β)-metrics.

In this paper, we find the relation between two Finsler spaces with Matsumoto

metric L = α2

α−β and Randers metric L̄ = ᾱ+β̄ respectively under projective change.

2. Preliminaries

The terminology and notations are referred to ([1], [3], [12]). Let Fn = (M,L)
be a Finsler space on a differential manifoldM endowed with a fundamental function
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L(x, y). We use the following notations:

(a) gij =
1

2
∂̇i∂̇jL

2, ∂̇i =
∂

∂yi
,

(b) Cijk =
1

2
∂̇kgij ,

(c) hij = gij − lilj ,

(d) γi
jk =

1

2
gir(∂jgrk + ∂kgrj − ∂rgjk),

(e) Gi =
1

2
γi
jky

jyk, Gi
j = ∂̇jG

i, Gi
jk = ∂̇kG

i
j , Gi

jkl = ∂̇lG
i
jk.

The concept of (α, β)-metric L(α, β) was introduced in 1972 by M. Matsumoto
and studied by many authors like ([4], [9], [10], [15], [16]). The Finsler space Fn =
(M,L) is said to have an (α, β)-metric if L is a positively homogeneous function
of degree one in two variables α2 = aij(x)y

iyj and β = bi(x)y
i. A change L → L̄

of a Finsler metric on a same underlying manifold M is called projective if any
geodesic in (M,L) remains to be a geodesic in (M, L̄) and viceversa. We say that
a Finsler metric is projectively related to another metric if they have the same
geodesics as point sets. In Riemannian geometry, two Riemannian metrics α and ᾱ
are projectively related if and only if their spray coefficients have the relation [5]

(2.1) Gi
α = Gi

ᾱ + λxkykyi,

where λ = λ(x) is a scalar function on the based manifold and (xi, yj) denotes the
local coordinates in the tangent bundle TM .

Two Finsler metrics F and F̄ are projectively related if and only if their spray
coefficients have the relation [5]

(2.2) Gi = Ḡi + P (y)yi,

where P (y) is a scalar function on TM \ {0} and homogeneous of degree one in y.
A Finsler metric is called a projectively flat metric if it is projectively related to a
locally Minkowskian metric.

For a given Finsler metric L = L(x, y), the geodesics of L satisfy the following
ODEs:

d2xi

dt2
+ 2Gi(x,

dx

dt
) = 0,

where Gi = Gi(x, y) are called the geodesic coefficients, which are given by

Gi =
1

4
gil{[L2]xmylym − [L2]xl}.

Let ϕ = ϕ(s), |s| < b0, be a positive C∞ function satisfying the following

(2.3) ϕ(s)− sϕ
′
(s) + (b2 − s2)ϕ

′′
(s) > 0, (|s| ≤ b < b0).
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If α =
√

aijyiyj is a Riemannian metric and β = biy
i is 1-form satisfying ||βx||α < b0

∀x ∈ M, then L = ϕ(s), s = β/α, is called an (regular) (α, β)-metric. In this case,
the fundamental form of the metric tensor induced by L is positive definite.

Let ∇β = bi|jdx
i ⊗ dxj be covariant derivative of β with respect to α.

Denote

rij =
1

2
(bi|j + bj|i), sij =

1

2
(bi|j − bj|i).

β is closed if and only if sij = 0 [13]. Let sj = bisij , s
i
j = ailslj , s0 = siy

i, si0 = sijy
j

and r00 = rijy
iyj .

The relation between the geodesic coefficients Gi of L and geodesic coefficients
Gi

α of α is given by

(2.4) Gi = Gi
α + αQsi0 + {−2Qαs0 + r00}{Ψbi +Θα−1yi},

where

Θ =
ϕϕ

′ − s(ϕϕ
′′
+ ϕ

′
ϕ

′
)

2ϕ((ϕ− sϕ′) + (b2 − s2)ϕ′′)
,

Q =
ϕ

′

ϕ− sϕ′ ,

Ψ =
1

2

ϕ
′′

(ϕ− sϕ′) + (b2 − s2)ϕ′′ .

Definition 2.2([5]). Let

Di
jkl =

∂3

∂yj∂yk∂yl

(
Gi − 1

n+ 1

∂Gm

∂ym
yi
)
,(2.5)

where Gi are the spray coefficients of L. The tensor D = Di
jkl∂i⊗dxj ⊗dxk⊗dxl is

called the Douglas tensor. A Finsler metric is called Douglas metric if the Douglas
tensor vanishes.

We know that the Douglas tensor is a projective invariant [7]. Note that the
spray coefficients of a Riemannian metric are quadratic forms and one can see that
the Douglas tensor vanishes form (2.5). This shows that Douglas tensor is a non-
Riemannian quantity.

In the following, we use quantities with a bar to denote the corresponding
quantities of the metric L̄. Now, we compute the Douglas tensor of a general (α, β)-
metric.
Let

Ĝi = Gi
α + αQsi0 +Ψ{−2Qαs0 + r00}bi.

Then (2.4) becomes

Gi = Ĝi +Θ{−2Qαs0 + r00}α−1yi.
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Clearly, Gi and Ĝi are projective equivalent according to (2.2), they have the same
Douglas tensor.
Let

T i = αQsi0 +Ψ{−2Qαs0 + r00}bi.(2.6)

Then Ĝi = Gi
α + T i, thus

Di
jkl = D̂i

jkl

=
∂3

∂yj∂yk∂yl

(
Gi

α − 1

n+ 1

∂Gm
α

∂ym
yi + T i − 1

n+ 1

∂Tm

∂ym
yi
)

=
∂3

∂yj∂yk∂yl

(
T i − 1

n+ 1

∂Tm

∂ym
yi
)
.(2.7)

To simplify (2.7), we use the following identities

αyk = α−1yk, syk = α−2(bkα− syk),

where yi = aily
l, αyk= ∂α

∂yk . Then

[αQsm0 ]ym = α−1ymQsm0 + α−2Q
′
[bmα2 − βym]sm0

= Q
′
s0

and

[Ψ(−2Qαs0 + r00)b
m]ym = Ψ

′
α−1(b2 − s2)[r00 − 2Qαs0]

+ 2Ψ[r0 −Q
′
(b2 − s2)s0 −Qss0],

where rj = birij and r0 = riy
i. Thus from (2.6), we obtain

Tm
ym = Q

′
s0 +Ψ

′
α−1(b2 − s2)[r00 − 2Qαs0]

+ 2Ψ[r0 −Q
′
(b2 − s2)s0 −Qss0].(2.8)

Now, we assume that the (α, β)-metrics L and L̄ have the same Douglas tensor, i.e.,
Di

jkl = D̄i
jkl. Thus from (2.5) and (2.7), we get

∂3

∂yj∂yk∂yl

(
T i − T̄ i − 1

n+ 1

(
Tm
ym − T̄m

ym

)
yi
)

= 0.

Then there exists a class of scalar functions Hi
jk = Hi

jk(x), such that

(2.9) Hi
00 = T i − T̄ i − 1

n+ 1

(
Tm
ym − T̄m

ym

)
yi,
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where Hi
00 = Hi

jky
jyk, T i and Tm

ym are given by the relations (2.6) and (2.8) respec-
tively.

3. Projective change between two Finsler spaces with (α, β)-metric

In this section, we find the projective relation between two (α, β)-metrics, i.e.,

Matsumoto metric L = α2

α−β and Randers metric L̄ = ᾱ + β̄ on a same underlying

manifold M of dimension n > 2. For (α, β)-metric L = α2

α−β , one can prove by

(2.3) that L is a regular Finsler metric if and only if 1-form β satisfies the condition
∥βx∥α < 1

2 for any x ∈ M . The geodesic coefficients are given by (2.4) with

θ =
1− 4s

2(1 + 2b2 − 3s)
,

Q =
1

1− 2s
,

Ψ =
1

1 + 2b2 − 3s
.(3.1)

Substituting (3.1) in to (2.4), we get

Gi = Gi
α +

α2si0
α− 2β

+

[
−2α2s0
α− 2β

+ r00

] [
2α2bi + (α− 4β)yi

2α(α+ 2αb2 − 3β)

]
.(3.2)

For Randers metric L̄ = ᾱ+β̄, one can also prove by (2.3) that L̄ is a regular Finsler
metric if and only if ∥βx∥α < 1 for any x ∈ M . The geodesic coefficients are given
by (2.4) with

θ̄ =
1

2(1 + s)
, Q̄ = 1, Ψ̄ = 0.(3.3)

First, we prove the following lemma:

Lemma 3.1. Let L = α2

α−β and L̄ = ᾱ+ β̄ be two (α, β)-metrics on a manifold M
with dimension n > 2. Then they have the same Douglas tensor if and only if both
the metrics L and L̄ are Douglas metrics.

Proof. First, we prove the sufficient condition. Let L and L̄ be Douglas metrics and
corresponding Douglas tensors be Di

jkl and D̄i
jkl. Then by the definition of Douglas

metric, we have Di
jkl = 0 and D̄i

jkl = 0, i.e., both L and L̄ have same Douglas

tensor. Next, we prove the necessary condition. If L and L̄ have the same Douglas
tensor, then (2.9) holds. Substituting (3.1) and (3.3) in to (2.9), we obtain

(3.4) Hi
00 =

Aiα6 +Biα5 + Ciα4 +Diα3 + Eiα2 + F iα+Hi

Iα5 + Jα4 +Kα3 + Lα2 +Mα
− ᾱs̄i0,
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where

Ai = −(1 + 2b2)[2bis0 − (1 + 2b2)si0],

Bi = (1 + 2b2){−4β(2 + b2)si0 + bir00 − 2λyi[(1 + 2b2)s0 + r0]}
+2(5 + 4b2)[b2λyi + biβ]s0,

Ci = 2β(1 + 2b2)[2(3βsi0 − bir00) + λyi(7s0 + 4r0)] + 3[3β2si0

−λyi{b2r00 + 2β(4b2s0 − r0)}],
Di = −2β[19β2si0 − 8biβ(b2 + 2)r00 + 2λyi(19βs0 + 24βr0

+8b2βs0 − 6b2r00)],

Ei = −3β2{4biβr00 + λyi[(4b2 − 1)r00 − 4β(3s0 + 2r0)]},
F i = −12λyiβ3r00,

Hi = 12λyiβ4r00,

λ =
1

n+ 1
(3.5)

and

I = (1 + 2b2)2,

J = −2β[5 + 2b2(7 + 4b2)],

K = β2[37 + 16b2(b2 + 4)],

L = −12β3(4b2 + 5),

M = 36β4.(3.6)

Then (3.4) is equivalent to

Aiα6 +Biα5 + Ciα4 + Diα3 + Eiα2 + F iα+Hi

= (Iα5 + Jα4 +Kα3 + Lα2 +Mα)(Hi
00 + ᾱs̄i0).(3.7)

Replacing yi in (3.7) by −yi yields

−Aiα6 +Biα5 − Ciα4 + Diα3 − Eiα2 + F iα−Hi

= (Iα5 − Jα4 +Kα3 − Lα2 +Mα)(Hi
00 − ᾱs̄i0).(3.8)

Subtracting (3.8) from (3.7), we obtain

(3.9) Aiα6 + Ciα4 + Eiα2 +Hi = Hi
00α

2(Jα2 + L) + αᾱs̄i0(Iα
4 +Kα2 +M).

Now, we can study two cases for Riemannian metric.
Case (i): If ᾱ = µ(x)α, then (3.9) reduces to

Aiα6 + Ciα4 + Eiα2 +Hi = Hi
00α

2(Jα2 + L) + µ(x)s̄i0α
2(Iα4 +Kα2 +M),
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which is written as

(3.10) Hi = [Hi
00(Jα

2 + L) + µ(x)s̄i0(Iα
4 +Kα2 +M)−Aiα4 − Ciα2 − Ei]α2.

From (3.10), we can see that Hi has the factor α2, i.e., 12λyir00β
4 has the factor

α2. Since β2 has no factor α2, the only possibility is that βr00 has the factor α2.
Then for each i there exists a scalar function τ i = τ(x) such that βr00 = τ iα2 which
is equivalent to bjr0k + bkr0j = 2τ iαjk.
When n > 2 and we assume that τ i ̸= 0, then

2 ≥ rank(bjr0k) + rank(bkr0j)

> rank(bjr0k + bkr0j)

= rank(2τ iαjk) > 2,(3.11)

which is impossible unless τ i = 0. Then βr00 = 0. Since β ̸= 0, we have r00 = 0,
implies that bi|j = 0.
Case (ii): If ᾱ ̸= µ(x)α, from (3.9), Hi has the factor α, i.e., 12λyir00β

4 has the
factor α. Note that β2 has no factor α. Then the only possibility is that βr00 has
the factor α2. As the similar reason in case (i), we have bi|j = 0 when n > 2.

It is well known that Matsumoto metric L = α2

α−β is a Douglas metric if and only if

bi|j = 0 [7]. Thus L is a Douglas metric. Since L is projectively related to L̄, then
both L and L̄ are Douglas metrics. 2

Now, we prove the following main theorem:

Theorem 3.1. The Finsler metric L = α2

α−β is projectively related to L̄ = ᾱ+ β̄ if
and only if the following conditions are satisfied

Gi
α = Gi

ᾱ + Pyi,

bi|j = 0,

dβ̄ = 0,(3.12)

where b = ∥β∥α, bi|j denote the coefficients of the covariant derivatives of β with
respect to α, P is a scalar function.

Proof. First, we prove the necessary condition. Since Douglas tensor is an invariant
under projective changes between two Finsler metrics, if L is projectively related
to L̄, then they have the same Douglas tensor. According to Lemma 3.1, we obtain
that both L and L̄ are Douglas metrics.
We know that Randers metric L̄ = ᾱ + β̄ is a Douglas metric if and only if β̄ is
closed [5], i.e.,

(3.13) dβ̄ = 0

and L = α2

α−β is a Douglas metric if and only if

(3.14) bi|j = 0,



88 Narasimhamurthy Senajji Kampalappa and Vasantha Dogehalli Mylarappa

where bi|j denote the coefficients of the covariant derivatives of β = biy
i with respect

to α. In this case, β is closed. Since β is closed, sij = 0, implies that bi|j = bj|i.
Thus si0 = 0, s0 = 0.
By using (3.14), we have r00 = rijy

iyj = 0. Substituting all these in (3.2), we
obtain

(3.15) Gi = Gi
α.

Since L is projective to L̄ = ᾱ + β̄, this is a Randers change between L and ᾱ.
Noticing that β̄ is closed, then L is projectively related to ᾱ. Thus there is a scalar
function P = P (y) on TM \ {0} such that

(3.16) Gi = Gi
ᾱ + Pyi.

From (3.15) and (3.16), we have

(3.17) Gi
α = Gi

ᾱ + Pyi.

(3.13) and (3.14) together with (3.17) complete the proof of the necessity.
For the sufficiency, noticing that β̄ is closed, it suffices to prove that L is projectively
related to ᾱ. Substituting (3.14) in to (3.2) yields (3.15).
From (3.15) and (3.17), we have

Gi = Gi
ᾱ + Pyi.

i.e., L is projectively related to ᾱ. 2

From the above theorem, immediately we get the following corollaries.

Corollary 3.1. The Finsler metric L = α2

α−β is projectively related to L̄ = ᾱ+ β̄ if
and only if they are Douglas metrics and the spray coefficients of α and ᾱ have the
following relation

Gi
α = Gi

ᾱ + Pyi,

where P is a scalar function. 2

Further, we assume that the Randers metric L̄ = ᾱ+ β̄ is locally Minkowskian,
where ᾱ is an Euclidean metric and β̄ = b̄iy

i is a one form with b̄i=constants. Then
(3.12) can be written as

Gi
α = Pyi,

bi|j = 0.(3.18)

Thus, we state

Corollary 3.2. The Finsler metric L = α2

α−β is projectively related to L̄ if and only

if L is projectively flat, in other words, L is projectively flat if and only if (3.18)
holds. 2
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