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Abstract. In this article, using the example of C. Camci([7]) we reconfirm necessary suf-

ficient condition for a slant curve. Next, we find some necessary and sufficient conditions

for a slant curve in a Sasakian 3-manifold to have: (i) a C-parallel mean curvature vector

field; (ii) a C-proper mean curvature vector field (in the normal bundle).

1. Introduction

Euclidean submanifolds x : Mm → Rn with proper mean curvature vector field
for the Laplacian, that is the mean curvature vector field H satisfying

△H = λH, λ ∈ R

have been studied extensively (see [8] and references therein). For instance, all
surfaces in Euclidean 3-space R3 with △H = λH are minimal, or an open portion
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of a totally umbilical sphere or a circular cylinder.

Arroyo, Barros and Garay [1], [3] studied curves and surfaces in the 3-sphere
S3 with proper mean curvature vector fields. Chen studied surfaces in hyperbolic
3-space with proper mean curvature vector fields [9].

All the space forms which consist of a sphere S3, an Euclidean R3 and a hyper-
bolic space H3 admit canonical almost contact structures compatible to the metric.
In particular, all 3-dimensional space forms are normal almost contact metric man-
ifolds. Moreover, except the model space Sol of solvegeometry, all the model spaces
of Thurston Geometry have canonical (homogeneous) normal almost contact metric
structures.

In [13], J. Inoguchi generalized some results on submanifolds with proper
mean curvature vector fields in the 3-sphere S3 obtained in [1], [3] to those in
3-dimensional Sasakian space forms.

In [15], C. Ozgur and M. M. Tripathi studied for Legendre curves in a Sasakian
manifold having a parallel mean curvature vector fields and a proper mean curvature
vector fields containing a biharmonic curve.

Generalizing a Legendre curve in a 3-dimensional contact metric manifold, we
consider a slant curve whose tangent vector field has constant angle with character-
istic direction ξ (see [10]). For a non-geodesic slant curve in a Sasakian 3-manifold,
the direction ξ becomes ξ = cosα0T + sinα0B, where T and B are unit tangent
vector field and binormal vector field, respectively. From this, we know that the
characteristic vector field ξ is orthogonal to the principal normal vector field N .

On the other hand, the mean curvature vector field H of a curve γ in 3-
dimensional contact Riemannian manifolds is defined by H = ∇γ̇ γ̇ = κN . There-
fore, we have that ξ is orthogonal to H for a slant curve in Sasakian 3-manifolds.

In this paper, we consider ∇γ̇H = λξ and ∆γ̇H = λξ corresponding to ∇γ̇H =
λH and ∆γ̇H = λH, respectively.

Let H be the mean curvature vector field of a curve in 3-dimensional contact
Riemannian manifoldsM . The mean curvature vector fieldH is said to be C-parallel
if ∇H = λξ. Moreover, the vector field H is said to be C-proper mean curvature
vector field if ∆H = λξ, where ∇ denotes the operator of covariant differentiation
of M . Similarly, in the normal bundle we can define C-parallel and C-proper mean
curvature vector field as follows: H is said to be C-parallel in the normal bundle if
∇⊥H = λξ, and H is said to be C-proper mean curvature vector field in the normal
bundle if ∆⊥H = λξ, where ∇⊥ denotes the operator of covariant differentiation in
the normal bundle of M .

In section 3, using the example of C. Camci([7]) we reconfirm necessary sufficient
condition for a slant curve. In section 4, we study a slant curve with C-parallel and
C-proper mean curvature vector field in Sasakian 3-manifolds. In section 5, we find
necessary and sufficient condition for a slant curve with C-parallel and C-proper
mean curvature vector field in the normal bundle in Sasakian 3-manifolds.



C-parallel Mean Curvature Vector Fields 51

2. Preliminaries

Let M be a 3-dimensional smooth manifold. A contact form is a one-form η
such that dη ∧ η ̸= 0 on M . A 3-manifold M together with a contact form η is
called a contact 3-manifold([4], [5]). The characteristic vector field ξ is a unique
vector field satisfying η(ξ) = 1 and dη(ξ, ·) = 0.

On a contact 3-manifold (M,η), there exists structure tensors (φ, ξ, η, g) such
that

(2.1) φ2 = −I + η ⊗ ξ, g(φX,φY ) = g(X,Y )− η(X)η(Y ),

(2.2) g(X,φY ) = dη(X,Y ), X, Y ∈ X(M).

The structure tensors (φ, ξ, η, g) are said to be the associated contact metric
structure of (M, g). A contact 3-manifold together with its associated contact metric
structure is called a contact metric 3-manifold.

A contact metric 3-manifold M satisfies the following formula [16]:

(2.3) (∇Xφ)Y = g(X + hX,Y )ξ − η(Y )(X + hX), X, Y ∈ X(M),

where h = £ξφ/2.
A contact metric 3-manifold (M,φ, ξ, η, g) is called a Sasakian manifold if it

satisfies

(2.4) (∇Xφ)Y = g(X,Y )ξ − η(Y )X

for all X,Y ∈ X(M).

Let γ : I → M = (M3, g) be a Frenet curve parametrized by the arc length in
a Riemannian 3-manifold M3 with Frenet frame field (T,N,B). Here T , N and B
are unit tangent, principal normal and binormal vector fields, respectively. Denote
by ∇ the Levi-Civita connection of (M, g). Then the Frenet frame satisfies the
following Frenet-Serret equations:

(2.5) ∇TT = κN, ∇TN = −κT + τB, ∇TB = −τN,

where κ = ∥∇TT∥ and τ are geodesic curvature and geodesic torsion of γ, respec-
tively. A Frenet curve is said to be a helix if both of κ and τ are constants.

3. Slant curves

Let M be a contact metric 3-manifold and γ(s) a Frenet curve parametrized
by the arc length s in M . The contact angle α(s) is a function defined by
cosα(s) = g(T (s), ξ). A curve γ is said to be a slant curve if its contact angle
is constant. Slant curves of contact angle π/2 are traditionally called Legendre
curves. The Reeb flow is a slant curve of contact angle 0.
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We take an adapted local orthonormal frame field {X,φX, ξ} of M such that
η(X) = 0.

Let γ be a non-geodesic Frenet curve in a Sasakian 3-manifold. Differentiating
the formula g(T, ξ) = cosα along γ, it follows that

−α′ sinα = g(κN, ξ) + g(T,−φT ) = κ η(N).

This equation implies the following result.

Proposition 3.1([10]). A non-geodesic curve γ in a Sasakian 3-manifold M is a
slant curve if and only if it satisfies η(N) = 0.

Hence the unit tangent vector field T of a slant curve γ(s) has the form

T = sinα0{cosβ(s)X + sinβ(s)φX}+ cosα0ξ.(3.1)

Then the principal normal vector field N and the characteristic vector field ξ are
respectively given by the following without loss of generality

N = − sinβ(s)X + cosβ(s)φX,(3.2)

ξ = cosα0T + sinα0B(3.3)

for some function β(s). Differentiating g(N, ξ) = 0 along γ and using the Frenet-
Serret equations, we have

(3.4) κ cosα0 + (1− τ) sinα0 = 0.

This implies that the ratio of τ − 1 and κ is a constant. Conversely, if η′(N) = 0
and the ratio of τ − 1 and κ ̸= 0 is constant, then γ becomes clearly a slant curve.
Thus we obtain the following result.

Theorem 3.2([10]). A non-geodesic curve in a Sasakian 3-manifold M is a slant
curve if and only if η′(N) = 0 and its ratio of τ − 1 and κ is constant.

The equation (3.4) implies the following result (compare with [2]).

Corollary 3.3. Let γ be a non-geodesic slant curve in a Sasakian 3-manifold M .
Then τ = 1 if and only if γ is a Legendre curve.

Using the Example 4.2 of C. Camci([7]) we reconfirm necessary sufficient con-
dition for a slant curve as following:

Example 3.1. In Sasakian space form R3(−3), we define γ(s) = (x(s), y(s), z(s))
by  x′(s) = −2

√
1− σ2 sin θ,

y′(s) = 2
√
1− σ2 cos θ,

z′(s) = 2σ + y(s)x′(s),
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where θ′ = −2σ + 2
1+σ . Then the tangent vector becomes

T = (
√
1− σ2 cos θ)e+ (−

√
1− σ2 sin θ)φe+ σξ

and

∇TT =

[
−σσ′

√
1− σ2

cos θ − (θ′ + 2σ)
√
1− σ2 sin θ

]
e

+

[
σσ′

√
1− σ2

sin θ − (θ′ + 2σ)
√

1− σ2 cos θ

]
φe+ σ′ξ.

(3.5)

Since κ2 =∥ ∇TT ∥, we have

κ2 =
(σ′)2 + 4(1− σ)2

1− σ2

and N = 1
κ∇TT.

In 3-dimensional almost contact metric manifold M3 = (M,φ, ξ, η, g), we define
a cross product ∧ by

X ∧ Y = −g(X,φY )ξ − η(Y )φX + η(X)φY,

where X,Y ∈ TM.

B = T ∧N = −g(T, φN)ξ − η(N)φT + η(T )φN.

So we get η(N) = 1
κσ

′ and η(B) = −g(T, φN) = − 1
κ (θ

′+2σ)(1−σ2) = 2
κσ−1.

Using the Frenet-Serret equation (2.5) we find

(3.6) (
σ′

κ
)′ + κσ =

2

κ
(τ − 1)(σ − 1),

If a curve γ is a slant curve, then η(N) = 1
κσ

′ = 0 and we see σ is a constant.

τ − 1

κ
=

κσ

2(σ − 1)
= constant.

Conversely, we suppose that η(N)′ = 0 and τ−1
κ = constant, then using the

equation (3.6) we obtain that a curve γ is a slant curve.

Remark 3.4. In ([7]), for the above curve in Sasakian space form R3(−3), he
suppose that σ(s) = 1

2 (1− cos(2
√
2s)), then κ = 2 and η(N)′ = 1

2σ
′′(s) is not zero

and therefore the curve γ is not a slant curve.
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4. Mean curvature vector fields

Let (M, g) be a Riemannian manifold and γ = γ(s) : I → M a unit speed curve
in M. Then the induced (or pull-back) vector bundle γ∗TM is defined by

γ∗TM :=
∪
s∈I

Tγ(s)M.

The Levi-Civita connection ∇ of M induces a connection ∇γ on γ∗TM as follows:

∇γ
d
ds

V = ∇γ̇V, V ∈ Γ (γ∗TM).

The Laplace-Beltrami operator ∆ = ∆γ of γ∗TM is given explicitly by

∆ = −∇γ̇∇γ̇ .

The mean curvature vector fieldH of a curve γ in 3-dimensional contact Riemannian
manifolds is defined by

H = ∇γ̇ γ̇ = κN.

In particular, for a Legendre curve γ in Sasakian manifolds we have

(4.1) H = ∇γ̇ γ̇ = κφγ̇.

Further, differentiating N = φγ̇ along γ, then using (2.4) we get τ = 1.

Using (2.5), we have

Lemma 4.1. Let γ be a curve in a contact Riemannian 3-manifold M . Then

∇γ̇∇γ̇ γ̇ = −κ2T + κ′N + κτB,(4.2)

∇γ̇∇γ̇∇γ̇ γ̇ = −3κκ′T + (κ′′ − κ3 − κτ2)N + (2κ′τ + κτ ′)B.(4.3)

4.1. C-parallel mean curvature vector field

For a slant curve γ in Sasakian 3-manifolds, from (3.3) and (4.2) we find that
γ satisfies ∇γ̇H = λξ if and only if

(4.4)

 κ2 = −λ cosα0,
κ′ = 0,
κτ = λ sinα0.

Therefore we obtain:

Theorem 4.2. Let γ be a slant curve in a Sasakian 3-manifold. Then γ has a
C-parallel mean curvature vector field if and only if γ is a geodesic(λ = 0) or helix
with κ =

√
−λ cosα0, τ = λ

κ sinα0, λ is a non-zero constant.
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In particular, for a Legendre curve we have the following:

Corollary 4.3. Let γ be a Legendre curve in a Sasakian 3-manifold. Then γ
satisfies ∇γ̇H = λξ if and only if γ satisfies ∇γ̇H = 0.

4.2. C-proper mean curvature vector field

For a slant curve γ in Sasakian 3-manifolds, from (3.3) and (4.3) we find that
γ satisfies ∆γ̇H = λξ if and only if

(4.5)

 3κκ′ = λ cosα0,
−κ′′ + κ3 + κτ2 = 0,
−(2κ′τ + κτ ′) = λ sinα0.

Hence we have:

Theorem 4.4. Let γ be a slant curve in a Sasakian 3-manifold. Then γ has no
C-proper mean curvature vector field.

Proof. We assume that λ = λ0 ̸= 0, where λ0 is a constant. Then from the above
first equation we get κ2 = 2

3 (λ0 cosα0)s + a, a is a constant. Applying this result
to the second equation of (4.5), it is a contradiction. 2

For the case of λ = 0, we have the following:

Corollary 4.5. Let γ be a slant curve in a Sasakian 3-manifold. Then γ satisfies
∆γ̇H = 0 if and only if γ is a geodesic.

In [15], C. Ozgur and M. M. Tripathi showed that Legendre curves satisfying
∇γ̇H = 0 or ∆γ̇H = 0 in Sasakian 3-manifolds are geodesic.

5. Mean curvature vector fields in the normal bundle

The normal bundle of γ in M is defined by

T⊥γ =
∪
s∈I

(Rγ̇(s))⊥.

The connection ∇⊥ of the normal bundle T⊥γ is called the normal connection. The
Laplace-Beltrami operator

∆⊥ = −∇⊥
γ̇ ∇⊥

γ̇

of the normal bundle T⊥γ is called the normal Laplacian of γ.

Then from (2.5) we have:

Lemma 5.1.Let γ be a curve in contact Riemannian 3-manifold M . Then

∇⊥
γ̇ ∇⊥

γ̇ γ̇ = κ′N + κτB,(5.1)

∇⊥
γ̇ ∇⊥

γ̇ ∇⊥
γ̇ γ̇ = (κ′′ − κτ2)N + (2κ′τ + κτ ′)B.(5.2)
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5.1. C-parallel mean curvature vector field in the normal bundle

For a slant curve γ in Sasakian 3-manifolds, from (3.3) and (5.1) we find that
γ satisfies ∇⊥

γ̇ H = λξ if and only if

(5.3)

 λ cosα0 = 0,
κ′ = 0,
κτ = λ sinα0.

From this, we have:

Theorem 5.2. Let γ be a non-geodesic slant curve in a Sasakian 3-manifold. Then
γ has a C-parallel mean curvature vector field in normal bundle if and only if γ is a
circle(λ = 0) or a Legendre helix(λ ̸= 0) with λ = κ, κ and τ are non-zero constant.

Proof. From the second equation of (5.3) we can see that κ is a constant. Using the
first equation of (5.3), we get λ = 0 or γ is a Legendre curve. If λ = 0, then a slant
curve γ becomes a circle as κ is a constant and τ = 0. If λ ̸= 0 then a slant curve
γ is a Legendre curve and λ = κ. 2

5.2. C-proper mean curvature vector field in the normal bundle

For a slant curve γ in Sasakian 3-manifolds, from (3.3) and (5.2) we find that
γ satisfies ∆⊥

γ̇ H = λξ if and only if

(5.4)

 λ cosα0 = 0,
−κ′′ + κτ2 = 0,
−(2κ′τ + κτ ′) = λ sinα0.

From this, we get

Theorem 5.3. Let γ be a non-geodesic slant curve in a Sasakian 3-manifold.
Then the slant curve γ has a C-proper mean curvature vector field in the normal
bundle if and only if γ is a circle(λ = 0) or a Legendre curve(λ ̸= 0) with κ =
a exp(s) + b exp(−s), τ = 1 and λ = −2{a exp(s) − b exp(−s)} where a and b are
constants.

Proof. (I) For the case of λ = 0, we have

(5.5)

{
κ′′ − κτ2 = 0,
2κ′τ + κτ ′ = 0.

Since a curve γ is a non-geodesic slant curve, by Theorem 3.2, τ = aκ + 1,
where a is a constant. From the second equation of (5.5), we have that κ′ = 0 or
3aκ+ 2 = 0.
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For the case of κ′ = 0, we get κ = constant ̸= 0 and τ = 0.
For the case of 3aκ + 2 = 0, using the first equation of (5.5) we have τ = 0.

However, it is contradictory to slant curve condition. Hence, for a non-geodesic
slant curve γ in a Sasakian 3-manifold, γ satisfies ∆⊥

γ̇ H = 0 if and only if γ is a
circle with κ = constant ̸= 0 and τ = 0.

(II) For the case of λ ̸= 0, we can see that γ is a Legendre curve satisfying

(5.6)

{
κ′′ − κ = 0,
2κ′ = −λ.

From this, for a slant curve γ in a Sasakian 3-manifold, γ satisfies ∆⊥
γ̇ H = λξ

if and only if γ is a Legendre curve with κ = a exp(s) + b exp(−s), τ = 1 and
λ = −2{a exp(s)− b exp(−s)} where a and b are constants. 2

Now, we consider slant curve satisfying (4.4) in the Heisenberg group H3.

Example 5.1([6], [10], [12]). The Heisenberg group H3 is a Cartesian 3-space
R3(x, y, z) furnished with the group structure

(x′, y′, z′) · (x, y, z) = (x′ + x, y′ + y, z′ + z + (x′y − y′x)/2).

Define the left-invariant metric g by

g =
dx2 + dy2

4
+ η ⊗ η, η =

1

2
{dz + 1

2
(ydx− xdy)}.

We take a left-invariant orthonormal frame field (e1, e2, e3):

e1 = 2
∂

∂x
− y

∂

∂z
, e2 = 2

∂

∂y
+ x

∂

∂z
, e3 = 2

∂

∂z
.

Then the commutative relations are derived as follows:

(5.7) [e1, e2] = 2e3, [e2, e3] = [e3, e1] = 0.

The dual frame field (θ1, θ2, θ3) is given by

θ1 =
1

2
dx, θ2 =

1

2
dy, θ3 =

1

2
dz +

ydx− xdy

4
.

Then the 1-form η = θ3 is a contact form and the vector field ξ = e3 is the
characteristic vector field on H3.

We define a (1,1)-tensor field φ by

φe1 = e2, φe2 = −e1, φξ = 0.

Then we find

(5.8) dη(X,Y ) = g(X,φY ),
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and hence, (η, ξ, φ, g) is a contact Riemannian structure. Moreover, we see that it
becomes a Sasakian structure.

Let γ be a slant curve in H3. Then for a constant θ we put γ′(s) = T (s) =
T1e1 + T2e2 + T3e3 and T1(s) = sin θ cosβ(s), T2 = sin θ sinβ(s), T3 = cos θ. By
using Frenet-Serret equations (2.5) we compute the geodesic curvature κ and the
geodesic torsion τ for a slant curve γ in H3. Then we obtain

κ = sin θ(β′(s)− 2 cos θ),

τ = cos θ(β′(s)− 2 cos θ) + 1,

(5.9)

where we assume that sin θ(β′(s)− 2 cos θ) > 0.
Here, the tangent vector field T of γ is also represented by the following:

T =

(
dx

ds
,
dy

ds
,
dz

ds

)
=

dx

ds

∂

∂x
+

dy

ds

∂

∂y
+

dz

ds

∂

∂z
.

Then it follows that

dx

ds
= 2T1,

dy

ds
= 2T2,

dz

ds
= 2T3 +

1

2

(
x
dy

ds
− y

dx

ds

)
.

From C-parallel mean curvature vector field condition of the theorem 4.2 and
(5.9), we find β(s) = As + a, where A = − λ

sin2 θ
(sin θ − cos2 θ) + 2 cos θ. Then we

can find an explicit parametric equations of slant curves γ which are helices: Then
every slant curve with C-parallel mean curvature vector fields in H3 is represented
as 

x(s) = 2
A sin θ sin(As+ a) + b,

y(s) = − 2
A sin θ cos(As+ a) + c,

z(s) =
(
2 cos θ + 2 sin2 θ

A

)
s− 1

A sin θ{b cos(As+ a) + c sin(As+ a)}+ d,

for a constant contact angle θ, where A, a, b, c, d are constants. These slant helices
satisfy κ2 = −λ cos θ, κτ = λ sin θ, where λ is a non-zero constant.

In the same way, we can find the slant curves satisfying C-parallel or C-proper
mean curvature vector field (in the normal bundle).
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