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Abstract. In a previous paper, the author proved that all odd cycles, except five cycles,

are highly Ramsey-infinite. In this paper, we fill in the missing case, and show that five

cycles are highly Ramsey-infinite.

1. Introduction

All graphs in this paper are simple, finite and undirected. For graphs G, and
H, and an integer r, G is r-Ramsey for H, if any arbritrary colouring of the edges
of G with r colours, yields a copy of H all edges of which are the same colour. A
graph G is r-Ramsey-minimal for H if it is r-Ramsey for H but no proper subgraph
of G is. H is r-Ramsey-infinite if there are infinitely many graphs G that are r-
Ramsey-minimal for H. In [4, 5] Nesětřil and Rödl started to characterise which
graphs are 2-Ramsey-infinite. The full characterisation proceeded in many steps,
but was completed in the 1990s in [3] and [6]. The non-symmetric version of the
problem is still open, and significant progress was made relatively recently in [1].
For a more thorough list of references see [1] and [7].

In [2], a stronger version of ‘Ramsey-infinite’ was introduced. They showed that
for any 3-connected graph H, there is a constant c such that for large enough n,
there are at least 2cn logn graphs on at most n vertices that are 2-Ramsey-minimal
for H. In [7] we took this a step further. A graph H is highly r-Ramsey-infinite

if for some constant c, and large enough n, there are at least 2cn
2

non-isomorphic
graphs on at most n vertices that are r-Ramsey-minimal for H.

In [7] it was shown that for k ≥ 3 and r ≥ 2 the clique Kk is highly r-Ramsey-
infinite. In [8] it was shown that for odd g ≥ 7 and r ≥ 2 the cycle Cg is highly
r-Ramsey-infinite. In this paper, we fill in the missing case and prove the following.

Theorem 1.1. For all integers r ≥ 2, C5 is highly r-Ramsey-infinite.

We remark that the main construction shares an underlying idea with the main
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constuctions in [7] and [8], but is considerably simpler, and with only small changes
can be made to replace them both.

2. Notation and definitions

We identify a graphG with its edgeset E(G). We let [r] denote the set {1, . . . , r}.
Given a function ϕ defined on a set S we let ϕ(S) denote the set {ϕ(s) | s ∈ S}. An
r-colouring of a graph G is a mapping from the edges to the set [r]. An r-colouring
of a graph G is C5-free if there is no monochromatic copy of C5 in G, that is, there
is no copy of C5 all of whose edges get the same colour. We will frequently index
vertices ‘modulo m’, for some integer m; when we do this, we use the symbols
1, . . . ,m, instead of 0, . . . ,m− 1.

The following alternate definition of highly r-Ramsey-infinite was shown implic-
itly in both [7] and [8], and is easier to work with.

Lemma 2.1. A graph H is highly r-Ramsey-infinite if there is some constant c
such that for all odd m ≥ 3 there are 2m

2

different labelled graphs on at most c ·m
vertices that are r-Ramsey-minimal for H.

Proof. Indeed let H be as in the statement of the lemma. Let c′ = 1/8c2, and

n0 > 3c be large enough that 22c
′n2

0/n0! > 2c
′n2

0 . Given n > n0, let m be the
maximum odd integer for which c ·m ≤ n. So m ≥ n

2c .

By assumption, there are at least 2m
2

different labelled graphs on at most
c ·m ≤ n vertices that are r-Ramsey-minimal for H. So there are at least

2m
2

n!
≥ 2(n/2c)

2

n!
=

22c
′n2

n!
> 2c

′n2

non-isomorphic such graphs. Thus H is r-Ramsey-minimal. 2

3. Gadgets

We will use the following graphs whose existence was proved in [8].

Definition 3.1. For r ≥ 2, a negative signal sender S = S−
r is a graph containing

signal edges e and f , and satisfying the following properties.

i. S has a C5-free r-colouring.

ii. Under any C5-free r-colouring of S, e and f get different colours.

iii. S has girth 5 and the distance between e and f in S is 6.

A positive signal sender S = S+
r is defined similarly, but we replace the word

‘different’ in (ii) with ‘the same’.

We will often use these senders in constructions in the following way. Given a
graph G with edges e1 and e2 we will take a copy S of S−

r ( or S+
r ,) disjoint from G,

and we will identify the edges e1 and e2 with the edges e and f of S, respectively.
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When we do this we say that we ‘connect the edges e1 and e2 with a negative
(positive) sender.’ We will usually connect several pairs of edges with senders, it is
always assumed that these senders are all distinct and disjoint.

The following was proved in [8] as an immediate consequence of property (iii)
in Definition 3.1.

Proposition 3.2. Given a graph G with edges e1 and e2, when we connect the
edges e1 and e2 with a negative or positive sender S, there are no cycles of length
five or less, that are not entirely within G or entirely within S.

In [8], senders were used to construct the following more general gadget. It was
constructed for r colours, but we only need it for 2.

Lemma 3.3. Let Γ ⊂ {ν | ν : W → [2]} be a set of 2-colourings of a set W ,
which is closed under permutation of [2]. There exists a graph M with the following
properties.

i. W ⊂ M(= E(M))

ii. A mapping ν : W → [2] can be extended to a C5-free 2-colouring of M if and
only if ν is in Γ.

iii. M has girth 5 and the distance between any two edges of W is at least 6

The following comes from an easy application of Lemma 3.3.

Corollary 3.4. There exists a graph N containing signal edges e, f and f ′ and
satisfying the following properties.

i. A 2-colouring ϕ of {e, f, f ′} can be extended to a C5-free 2-colouring of N , if
and only if ϕ({f, f ′}) ̸= ϕ(e).

ii. N has girth 5 and the distance between any two signal edges is at least 6.

The following follows from property (ii) of Corollary 3.4 just as 3.2 follows from
property (iii) of Definition 3.1.

Proposition 3.5. Given a graph G and the graph N from Corollary 3.4 we intro-
duce no new cycles of length five or less by identifying the edges e, f and f ′ of N
with edges of G.

Lemma 3.6. For every odd integer m ≥ 3, there exists a graph T = T (m) contain-
ing signal edges f∗, f1, . . . , fm and satisfying the following properties. (All indices
in the lemma and the proof are modulo m.)

i. For every C5-free 2-colouring ϕ of T with ϕ(f∗) = 1 there is some α ∈ [m]
such that ϕ(fα) = ϕ(fα+1) = 2.

ii. For every α ∈ [m] there is a C5-free 2-colouring ϕ of T with ϕ(f∗) = 1 such
that ϕ(fi) ̸= ϕ(fi+1) for all i ̸= α.

iii. There exists some constant cT , independent of m, such that |V (T )| ≤ cTm.
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Proof. For i = 1, . . . ,m let Ni be a copy of the graph N given by Corollary 3.4. Let
ei, fi and f ′

i be the copies of e, f , and f ′ respectively in Ni. Construct T from the
disjoint graphs N1, . . . , Nm and a disjoint edge f∗ by identifying ei with f∗, and fi
with f ′

i+1, for i = 1, . . . ,m.
We verify that this graph T satisfies properties (i - iii). Let ϕ be a C5-free 2-

colouring of T with ϕ(f∗) = 1. For every i ∈ [m], as ϕ(ei) = ϕ(f∗) = 1, at least one
of the edges fi and fi+1 = f ′

i get colour 2. So at least half of the edges f1, . . . , fm
get colour 2. As m is odd, this gives property (i).

For property (ii), let α ∈ [m] be fixed. Define a 2-colouring ϕ of T as follows.
Let ϕ(f∗) = 1, and let ϕ(fi) = 2 for i = α, α+1, α+3, . . . , α+(m−2) (modulo m),
and ϕ(fi) = 1 otherwise. For each i ∈ [m] \ {α}, ϕ(fi) and ϕ(fi+1) are not both 1,
so by property (i) of Corollary 3.4 there is an extension of ϕ to a C5-free 2-colouring
of Ni; let ϕ be extended by this extension. By Proposition 3.5, any copy of C5 in
T is entirely within one of the graphs N1, . . . , Nm. Thus this is a C5-free colouring
of T .

Property (iii) follows from the fact that T is built from m copies of the graph
N from Corollary 3.4, which does not depend on m. 2

4. Proof of Theorem 1.1

In the first two subsections of this section we construct auxillary graphs G0 and
G. In the third subsection we use them to construct 2m

2

different graphs that are
2-Ramsey for C5. In the final subsection, we prove Theorem 1.1 by induction on r,
using the graphs from the earlier subsections for the base case r = 2.

4.1. The Graph G0

Let P be the 3-path p1xyp2. We define four colourings ϕ11, ϕ12, ϕ21 and ϕ22 of
P by

ϕij(p1x) = i ϕij(xy) = j ϕij(yp2) = i.

Let these colourings be defined similarily on any copy of P .
Let C consist of vertices {c1, c2, c3} with cα and cα+1 (modulo 3) connected by

a copy Pα of P for each α ∈ [3]. (So C is a 9-cycle.) For i, j ∈ [2], let ϕij be the
colouring on C that restricts to ϕij on each of P1, P2, and P3. Let E be the set of
6 possible edges between {p1, p2} and {c1, c2, c3}. Let G0 = P ∪ C ∪ E.

Claim 4.1. The graph G0 satisfies the following properties.

i. There is no C5-free 2-colouring ϕ of G0 that restricts to ϕ11 on P and to ϕ22

on C, or vice-versa.

ii. Any 2-colouring ϕ of P ∪ C that restricts on P or C to ϕ12 or ϕ21, can be
extended to a C5-free 2-colouring of G0.

iii. For any e ∈ E, the 2-colouring ϕ of P ∪ C which restricts to ϕ11 on P and
ϕ22 on C, extends to a C5-free 2-colouring of Ge = G0 \ {e}.
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Proof. (i) Assume that there is such a C5-free 2-colouring ϕ of G0. By considering,
for α ∈ {1, 2, 3}, the subgraph of G0 induced by the vertices of C and Pα, it is not
hard to check that ϕ must have different colours on p1cα and p1cα+1. So

ϕ(p1c1) ̸= ϕ(p1c2) ̸= ϕ(p1c3) ̸= ϕ(p1c1).

But, ϕ being a 2-colouring, this means that ϕ(p1c1) ̸= ϕ(p1c1), which is impossible.
(ii) Let ϕ restrict on C to either ϕ12 or ϕ21. If ϕ restricts on P to ϕ11 let

ϕ(E) = 2, otherwise, let ϕ(E) = 1. It is easy to verify that this ϕ is C5-free.
Similarily, let ϕ restrict on P to either ϕ12 or ϕ21. If ϕ restricts on C to ϕ11 let
ϕ(E) = 2, otherwise, let ϕ(E) = 1.

(iii) Assume, without loss of generality, that e = p1c1. Extend ϕ to E \ {e} as
follows. Let ϕ have colour 1 on p1c3 and p2c2 and colour 2 on all other edges in
E \ {e}. One can check that this is a C5-free 2-colouring of Ge. 2

4.2. The Graph G∗

For any copy C ′ of C and P ′ of P , refer to the edges that get colour 1 under the
colouring ϕ12 as ‘1-edges’, and the edges that get colour 2 under ϕ12 as ‘2-edges’.

Let odd m ≥ 3 be fixed. Let TC and TP be copies of the graph T (m) from
Lemma 3.6. For i = 0, . . . ,m, let fC

i and fP
i be the copies of fi in TC and TP

respectively. For i = 1, . . . ,m, let Ci be a copy of C, and let P i and Qi be copies
of P .

To construct G∗ from the disjoint graphs TP , TC , Ci, P i and Qi, join fC
0 and

fP
0 with a negative sender, and for i = 1, . . . ,m, do the following (indices modulo
m).

• Join the 1-edges in Ci to fC
i , and the 2-edges in Ci to fC

i+1 with positive
senders.

• Join the 1-edges in P i and Qi to fP
i , and the 2-edges in P i and Qi to fP

i+1

with positive senders.

We now observe some properties of G∗ which are almost immediate from the
construction, and the corresponding properties of T listed in Lemma 3.6.

Claim 4.2. G∗ has the following properties.

i. For any C5-free 2-colouring ϕ of G∗ with ϕ(fC
0 ) = 1 there exist α, β ∈ [m]

such that ϕ restricts on Cα to ϕ22 and on P β and Qβ to ϕ11.

ii. For any choice of α, β ∈ [m] there is a C5-free 2-colouring ϕ of G∗, with
ϕ(fC

0 ) = 1, that restricts on Ci, P j and Qj to ϕ12 or ϕ21 for all i ̸= α and
j ̸= β.

iii. There exists some constant c independent of m, such that |V (G∗)| < cm.

Proof. For item (i), let ϕ be a C5-free 2-colouring of G∗ with ϕ(fC
0 ) = 1. By Lemma

3.6 (i), there exists α ∈ [m] such that ϕ(fC
α ) = ϕ(fC

α+1) = 2. As ϕ is C5-free on
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the positive senders connecting these edges to Cα, ϕ restricts on Cα to ϕ22. The
sender from fC

0 to fP
0 ensures that ϕ(fP

0 ) = 2, and so we can argue similarily that
for some β ∈ [m], ϕ restricts on P β and Qβ to ϕ11.

Item (ii) follows from item (ii) of Lemma 3.6 just as (i) followed from (i) of
Lemma 3.6.

Item (iii) follows from property (iii) of Lemma 3.6 and the fact that G∗ consists
of two copies of T and 15 ·m+1 senders. Indeed, c = 2cT +16s is sufficient, where
s is number of vertices of the largest sender used. 2

4.3. The Graph G(I)

For copies C ′ of C and P ′ of P , we say we ‘complete C ′ and P ′ to a copy of G0’
to mean we add all edges between the copies of c1, c2, and c3 in C ′ and the copies
of p1, and p2 in P ′.

For any set I = (I1, . . . Im) of subsets of [m] construct G = G(I) from G∗, by
adding only edges, as follows.

For each i, j ∈ [m]

• complete Ci and P j to a copy of G0 if i ∈ Ij , and

• complete Ci and Qj to a copy of G0 otherwise.

Let Eij be the edges added between Ci and P j or Qj . Let EI = G \ G∗ be the
union of all the Eij .

Claim 4.3. G is 2-Ramsey for C5.

Proof. Towards contradiction, assume that there is a C5-free 2-colouring ϕ of G. By
item (i) of Claim 4.2, there are α, β ∈ [m] such that ϕ restricts on Cα to ϕ22 and
on P β and Qβ to ϕ11, (or vice versa). By construction Cα and either P β or Qβ

induce a copy of G0, and so ϕ restricted to this copy of G0 contradicts item (i) of
Claim 4.1. 2

Claim 4.4. For any edge e of EI, G \ {e} has a C5-free 2-colouring.

Proof. Assume, without loss of generality, that e is in E11. We define a C5-free
2-colouring ϕ of G \ {e}.

By item (ii) of Claim 4.2 there is a 2-colouring of G∗ that restricts on C1 to ϕ11,
on P 1 and Q1 to ϕ22, and on all other Ci, P j and Qj to ϕ12 or ϕ21. Define ϕ to
restrict to such a colouring on G∗.

For every i, j ∈ [m] with not both i, j = 1, there is, by item (ii) of Claim 4.1, a
C5-free 2-colouring of the copy of G0 in G∗ induced by the vertices of Ci ∪P j ∪Qj ,
which agrees with ϕ on Ci, P j and Qj . Define ϕ on Eij to agree with this colouring.

By item (iii) of Claim 4.1 there is a C5-free 2-colouring of the graph induced by
C1 ∪P 1 ∪Q1 (a copy of G0 less an edge of E) , which agrees with ϕ on C1, P 1 and
Q1. Define ϕ on E11 to agree with this colouring.

We now show that this 2-colouring ϕ of G \ {e} is C5-free. By construction it
is C5-free on G∗ and on the (partial) copies of G0 induced by any Ci and any P j
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or Qj . So we show that the only copies of C5 in G are entirely within one of these
graphs. Let C0 be a copy of C5 in G not entirely within G∗. As EI is bipartite, C0

must contain edges of G∗. As the vertices of G∗ that are incident to edges of EI are
distance at least 6 apart, unless they are the endpoints in a copy of the 3-path P in
one of Ci, P j or Qj , C0 must intesect G∗ in one of these paths. Thus it is entirely
within the copy of G0 induced by some Ci and some P j or Qj . 2

4.4. The proof of Theorem 1.1

The proof is by induction on r. The most difficult part, the base case r = 2
is almost done. Indeed, let c2 be the constant c from Claim 4.2 (iii). By Lemma

2.1 it is enough to show that for odd m ≥ 3 there are 2m
2

different labelled graph
on at most c2m vertices that are 2-Ramsey minimal for C5. For each of the 2m

2

choices of I of m subsets of [m], the graph G(I) is 2-Ramsey by Claim 4.3, and
any 2-Ramsey-minimal subgraph of it contains all of EI by Claim 4.4. Since EI

is different for different choices of I, this gives us 2m
2

different 2-Ramsey-minimal
graphs on at most cm vertices. This is enough.

For the induction on r we use the following construction. Let Gr−1 be some
graph on at most cr−1m vertices that is (r− 1)-Ramsey minimal for H. Construct
Gr from Gr−1 as follows.

i. Add a new vertex v0.

ii. For each vertex v ∈ V (Gr−1) add a new vertex v′ and the edges v0v
′ and v′v.

iii. Add a new edge e0.

iv. Connect every edge added in step (ii) to e0 with a positive sender.

Clearly Gr has less than 2s|V (Gr−1)| vertices where s is the number of vertices
in a positive sender. So Gr has less then crm vertices where cr = 2scr−1.

Claim 4.5. Gr is r-Ramsey for C5.

Proof. Assume, towards contradiction, that Gr has a C5-free r-colouring ϕ. Then ϕ
gets the same colour on all edges added in steps (ii) as they are all joined to e0 with
positive senders. Let this colour be r. Every edge in Gr−1 completes a C5 with such
edges, so must get some colour other than r, so ϕ restricted to Gr−1 is a C5-free
(r − 1)-colouring. As this is impossible, Gr is r-Ramsey for C5. 2

Claim 4.6. For any edge e ∈ Gr−1, Gr \ {e} has a C5-free (r − 1)-colouring.

Proof. Let e be an edge of Gr−1. As Gr−1 is (r − 1)-Ramsey-minimal there is a
C5-free (r− 1)-colouring ϕ of Gr−1 \ {e}. Extend ϕ to a r-colouring of Gr by setting
ϕ(f) = r on all edges f introduced in step (ii) of the construction, and on the edge
e0. As these edges form a forest, this introduces no monochromatic copies of C5.
As the edges e0 and f have the same colour for any f introduded in step (ii), ϕ
can be extended to a C5-free colouring of sender between them which was added in
step (iv) of the construction. By Proposition 3.2, this ϕ is a C5-free r-colouring of
Gr \ {e}. 2
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Now assume that the theorem has been proved for r− 1, that is, that there are
2m

2

different labelled graphs on at most cr−1m vertices that are (r − 1)-Ramsey
minimal for H. From each such graph Gr−1 the above construction gives a graph
Gr on at most crm vertices, which by Claim 4.5, is r-Ramsey for C5.

By Claim 4.6 the r-Ramsey-minimal subgraphs of Gr and G′
r constructed from

different Gr−1 and G′
r−1 are different. So we have 2m

2

different graphs on at most
crm vertices that are r-Ramsey-minimal for C5. The theorem thus holds for r, and
so follows by induction.

5. Concluding Remarks

In [8] we observed that no bipartite graph can be highly 2-Ramsey-infinite, but
we expect that any graph that is non-bipartite and 2-Ramsey-infinite, is highly
2-Ramsey-infinite.

Apart from C5 being non-bipartite, the important aspects for our proof that C5

is highly 2-Ramsey-infinite are the existence of positive and negative signal senders
for C5, and the fact that C5 has a vertex of degree 2 (in the construction of G0).

It was proved in [2] that senders exist for all 3-connected graphs H. However,
such graphs cannot have vertices of degree 2. It would be interesting to extend the
construction of the graphs G(I) from this paper work for other 3-connected graphs.
I cannot see how to do this though. Similarily, it would be interesting to construct
senders for more 2-connected graphs. This also seems to be difficult.
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