Five Cycles are Highly Ramsey Infinite

Mark Siggers
Department of Mathematics, Kyungpook National University, Daegu 702-701, Korea
e-mail: mhsiggers@knu.ac.kr

Abstract. In a previous paper, the author proved that all odd cycles, except five cycles, are highly Ramsey-infinite. In this paper, we fill in the missing case, and show that five cycles are highly Ramsey-infinite.

1. Introduction

All graphs in this paper are simple, finite and undirected. For graphs G, and H, and an integer r, G is r-Ramsey for H, if any arbritrary colouring of the edges of G with r colours, yields a copy of H all edges of which are the same colour. A graph G is r-Ramsey-minimal for H if it is r-Ramsey for H but no proper subgraph of G is. H is r-Ramsey-infinite if there are infinitely many graphs G that are r -Ramsey-minimal for H. In [4, 5] Nesětřil and Rödl started to characterise which graphs are 2-Ramsey-infinite. The full characterisation proceeded in many steps, but was completed in the 1990s in [3] and [6]. The non-symmetric version of the problem is still open, and significant progress was made relatively recently in [1]. For a more thorough list of references see [1] and [7].

In [2], a stronger version of 'Ramsey-infinite' was introduced. They showed that for any 3 -connected graph H, there is a constant c such that for large enough n, there are at least $2^{c n \log n}$ graphs on at most n vertices that are 2-Ramsey-minimal for H. In [7] we took this a step further. A graph H is highly r-Ramsey-infinite if for some constant c, and large enough n, there are at least $2^{c n^{2}}$ non-isomorphic graphs on at most n vertices that are r-Ramsey-minimal for H.

In [7] it was shown that for $k \geq 3$ and $r \geq 2$ the clique K_{k} is highly r-Ramseyinfinite. In [8] it was shown that for odd $g \geq 7$ and $r \geq 2$ the cycle C_{g} is highly r-Ramsey-infinite. In this paper, we fill in the missing case and prove the following.

Theorem 1.1. For all integers $r \geq 2, C_{5}$ is highly r-Ramsey-infinite.
We remark that the main construction shares an underlying idea with the main
constuctions in [7] and [8], but is considerably simpler, and with only small changes can be made to replace them both.

2. Notation and definitions

We identify a graph G with its edgeset $E(G)$. We let $[r]$ denote the set $\{1, \ldots, r\}$. Given a function ϕ defined on a set S we let $\phi(S)$ denote the set $\{\phi(s) \mid s \in S\}$. An r-colouring of a graph G is a mapping from the edges to the set $[r]$. An r-colouring of a graph G is C_{5}-free if there is no monochromatic copy of C_{5} in G, that is, there is no copy of C_{5} all of whose edges get the same colour. We will frequently index vertices 'modulo m ', for some integer m; when we do this, we use the symbols $1, \ldots, m$, instead of $0, \ldots, m-1$.

The following alternate definition of highly r-Ramsey-infinite was shown implicitly in both [7] and [8], and is easier to work with.

Lemma 2.1. A graph H is highly r-Ramsey-infinite if there is some constant c such that for all odd $m \geq 3$ there are $2^{m^{2}}$ different labelled graphs on at most $c \cdot m$ vertices that are r-Ramsey-minimal for H.
Proof. Indeed let H be as in the statement of the lemma. Let $c^{\prime}=1 / 8 c^{2}$, and $n_{0}>3 c$ be large enough that $2^{2 c^{\prime} n_{0}^{2}} / n_{0}!>2^{c^{\prime} n_{0}^{2}}$. Given $n>n_{0}$, let m be the maximum odd integer for which $c \cdot m \leq n$. So $m \geq \frac{n}{2 c}$.

By assumption, there are at least $2^{m^{2}}$ different labelled graphs on at most $c \cdot m \leq n$ vertices that are r-Ramsey-minimal for H. So there are at least

$$
\frac{2^{m^{2}}}{n!} \geq \frac{2^{(n / 2 c)^{2}}}{n!}=\frac{2^{2 c^{\prime} n^{2}}}{n!}>2^{c^{\prime} n^{2}}
$$

non-isomorphic such graphs. Thus H is r-Ramsey-minimal.

3. Gadgets

We will use the following graphs whose existence was proved in [8].
Definition 3.1. For $r \geq 2$, a negative signal sender $S=S_{r}^{-}$is a graph containing signal edges e and f, and satisfying the following properties.
i. S has a C_{5}-free r-colouring.
ii. Under any C_{5}-free r-colouring of S, e and f get different colours.
iii. S has girth 5 and the distance between e and f in S is 6 .

A positive signal sender $S=S_{r}^{+}$is defined similarly, but we replace the word 'different' in (ii) with 'the same'.

We will often use these senders in constructions in the following way. Given a graph G with edges e_{1} and e_{2} we will take a copy S of $S_{r}^{-}\left(\right.$or S_{r}^{+},) disjoint from G, and we will identify the edges e_{1} and e_{2} with the edges e and f of S, respectively.

When we do this we say that we 'connect the edges e_{1} and e_{2} with a negative (positive) sender.' We will usually connect several pairs of edges with senders, it is always assumed that these senders are all distinct and disjoint.

The following was proved in [8] as an immediate consequence of property (iii) in Definition 3.1.

Proposition 3.2. Given a graph G with edges e_{1} and e_{2}, when we connect the edges e_{1} and e_{2} with a negative or positive sender S, there are no cycles of length five or less, that are not entirely within G or entirely within S.

In [8], senders were used to construct the following more general gadget. It was constructed for r colours, but we only need it for 2 .

Lemma 3.3. Let $\Gamma \subset\{\nu \mid \nu: W \rightarrow[2]\}$ be a set of 2-colourings of a set W, which is closed under permutation of [2]. There exists a graph M with the following properties.
i. $W \subset M(=E(M))$
ii. A mapping $\nu: W \rightarrow[2]$ can be extended to a C_{5}-free 2 -colouring of M if and only if ν is in Γ.
iii. M has girth 5 and the distance between any two edges of W is at least 6

The following comes from an easy application of Lemma 3.3.
Corollary 3.4. There exists a graph N containing signal edges e, f and f^{\prime} and satisfying the following properties.
i. A 2 -colouring ϕ of $\left\{e, f, f^{\prime}\right\}$ can be extended to a C_{5}-free 2 -colouring of N, if and only if $\phi\left(\left\{f, f^{\prime}\right\}\right) \neq \phi(e)$.
ii. N has girth 5 and the distance between any two signal edges is at least 6 .

The following follows from property (ii) of Corollary 3.4 just as 3.2 follows from property (iii) of Definition 3.1.

Proposition 3.5. Given a graph G and the graph N from Corollary 3.4 we introduce no new cycles of length five or less by identifying the edges e, f and f^{\prime} of N with edges of G.

Lemma 3.6. For every odd integer $m \geq 3$, there exists a graph $T=T(m)$ containing signal edges $f_{*}, f_{1}, \ldots, f_{m}$ and satisfying the following properties. (All indices in the lemma and the proof are modulo m.)
i. For every C_{5}-free 2 -colouring ϕ of T with $\phi\left(f_{*}\right)=1$ there is some $\alpha \in[m]$ such that $\phi\left(f_{\alpha}\right)=\phi\left(f_{\alpha+1}\right)=2$.
ii. For every $\alpha \in[m]$ there is a C_{5}-free 2 -colouring ϕ of T with $\phi\left(f_{*}\right)=1$ such that $\phi\left(f_{i}\right) \neq \phi\left(f_{i+1}\right)$ for all $i \neq \alpha$.
iii. There exists some constant c_{T}, independent of m, such that $|V(T)| \leq c_{T} m$.

Proof. For $i=1, \ldots, m$ let N_{i} be a copy of the graph N given by Corollary 3.4. Let e_{i}, f_{i} and f_{i}^{\prime} be the copies of e, f, and f^{\prime} respectively in N_{i}. Construct T from the disjoint graphs N_{1}, \ldots, N_{m} and a disjoint edge f_{*} by identifying e_{i} with f_{*}, and f_{i} with f_{i+1}^{\prime}, for $i=1, \ldots, m$.

We verify that this graph T satisfies properties (i - iii). Let ϕ be a C_{5}-free 2colouring of T with $\phi\left(f_{*}\right)=1$. For every $i \in[m]$, as $\phi\left(e_{i}\right)=\phi\left(f_{*}\right)=1$, at least one of the edges f_{i} and $f_{i+1}=f_{i}^{\prime}$ get colour 2. So at least half of the edges f_{1}, \ldots, f_{m} get colour 2. As m is odd, this gives property (i).

For property (ii), let $\alpha \in[m]$ be fixed. Define a 2 -colouring ϕ of T as follows. Let $\phi\left(f_{*}\right)=1$, and let $\phi\left(f_{i}\right)=2$ for $i=\alpha, \alpha+1, \alpha+3, \ldots, \alpha+(m-2)$ (modulo m), and $\phi\left(f_{i}\right)=1$ otherwise. For each $i \in[m] \backslash\{\alpha\}, \phi\left(f_{i}\right)$ and $\phi\left(f_{i+1}\right)$ are not both 1 , so by property (i) of Corollary 3.4 there is an extension of ϕ to a C_{5}-free 2-colouring of N_{i}; let ϕ be extended by this extension. By Proposition 3.5, any copy of C_{5} in T is entirely within one of the graphs N_{1}, \ldots, N_{m}. Thus this is a C_{5}-free colouring of T.

Property (iii) follows from the fact that T is built from m copies of the graph N from Corollary 3.4, which does not depend on m.

4. Proof of Theorem 1.1

In the first two subsections of this section we construct auxillary graphs G_{0} and \mathcal{G}. In the third subsection we use them to construct $2^{m^{2}}$ different graphs that are 2-Ramsey for C_{5}. In the final subsection, we prove Theorem 1.1 by induction on r, using the graphs from the earlier subsections for the base case $r=2$.

4.1. The Graph G_{0}

Let P be the 3-path $p_{1} x y p_{2}$. We define four colourings $\phi_{11}, \phi_{12}, \phi_{21}$ and ϕ_{22} of P by

$$
\phi_{i j}\left(p_{1} x\right)=i \quad \phi_{i j}(x y)=j \quad \phi_{i j}\left(y p_{2}\right)=i .
$$

Let these colourings be defined similarily on any copy of P.
Let C consist of vertices $\left\{c_{1}, c_{2}, c_{3}\right\}$ with c_{α} and $c_{\alpha+1}$ (modulo 3) connected by a copy P_{α} of P for each $\alpha \in[3]$. (So C is a 9 -cycle.) For $i, j \in[2]$, let $\phi_{i j}$ be the colouring on C that restricts to $\phi_{i j}$ on each of P_{1}, P_{2}, and P_{3}. Let E be the set of 6 possible edges between $\left\{p_{1}, p_{2}\right\}$ and $\left\{c_{1}, c_{2}, c_{3}\right\}$. Let $G_{0}=P \cup C \cup E$.

Claim 4.1. The graph G_{0} satisfies the following properties.
i. There is no C_{5}-free 2 -colouring ϕ of G_{0} that restricts to ϕ_{11} on P and to ϕ_{22} on C, or vice-versa.
ii. Any 2-colouring ϕ of $P \cup C$ that restricts on P or C to ϕ_{12} or ϕ_{21}, can be extended to a C_{5}-free 2 -colouring of G_{0}.
iii. For any $e \in E$, the 2 -colouring ϕ of $P \cup C$ which restricts to ϕ_{11} on P and ϕ_{22} on C, extends to a C_{5}-free 2-colouring of $G_{e}=G_{0} \backslash\{e\}$.

Proof. (i) Assume that there is such a C_{5}-free 2-colouring ϕ of G_{0}. By considering, for $\alpha \in\{1,2,3\}$, the subgraph of G_{0} induced by the vertices of C and P_{α}, it is not hard to check that ϕ must have different colours on $p_{1} c_{\alpha}$ and $p_{1} c_{\alpha+1}$. So

$$
\phi\left(p_{1} c_{1}\right) \neq \phi\left(p_{1} c_{2}\right) \neq \phi\left(p_{1} c_{3}\right) \neq \phi\left(p_{1} c_{1}\right) .
$$

But, ϕ being a 2 -colouring, this means that $\phi\left(p_{1} c_{1}\right) \neq \phi\left(p_{1} c_{1}\right)$, which is impossible.
(ii) Let ϕ restrict on C to either ϕ_{12} or ϕ_{21}. If ϕ restricts on P to ϕ_{11} let $\phi(E)=2$, otherwise, let $\phi(E)=1$. It is easy to verify that this ϕ is C_{5}-free. Similarily, let ϕ restrict on P to either ϕ_{12} or ϕ_{21}. If ϕ restricts on C to ϕ_{11} let $\phi(E)=2$, otherwise, let $\phi(E)=1$.
(iii) Assume, without loss of generality, that $e=p_{1} c_{1}$. Extend ϕ to $E \backslash\{e\}$ as follows. Let ϕ have colour 1 on $p_{1} c_{3}$ and $p_{2} c_{2}$ and colour 2 on all other edges in $E \backslash\{e\}$. One can check that this is a C_{5}-free 2-colouring of G_{e}.

4.2. The Graph \mathcal{G}^{*}

For any copy C^{\prime} of C and P^{\prime} of P, refer to the edges that get colour 1 under the colouring ϕ_{12} as ' 1 -edges', and the edges that get colour 2 under ϕ_{12} as ' 2 -edges'.

Let odd $m \geq 3$ be fixed. Let T^{C} and T^{P} be copies of the graph $T(m)$ from Lemma 3.6. For $i=0, \ldots, m$, let f_{i}^{C} and f_{i}^{P} be the copies of f_{i} in T^{C} and T^{P} respectively. For $i=1, \ldots, m$, let C^{i} be a copy of C, and let P^{i} and Q^{i} be copies of P.

To construct \mathcal{G}^{*} from the disjoint graphs $T^{P}, T^{C}, C^{i}, P^{i}$ and Q^{i}, join f_{0}^{C} and f_{0}^{P} with a negative sender, and for $i=1, \ldots, m$, do the following (indices modulo m).

- Join the 1-edges in C^{i} to f_{i}^{C}, and the 2-edges in C^{i} to f_{i+1}^{C} with positive senders.
- Join the 1-edges in P^{i} and Q^{i} to f_{i}^{P}, and the 2-edges in P^{i} and Q^{i} to f_{i+1}^{P} with positive senders.
We now observe some properties of \mathcal{G}^{*} which are almost immediate from the construction, and the corresponding properties of T listed in Lemma 3.6.

Claim 4.2. \mathcal{G}^{*} has the following properties.
i. For any C_{5}-free 2 -colouring ϕ of \mathcal{G}^{*} with $\phi\left(f_{0}^{C}\right)=1$ there exist $\alpha, \beta \in[m]$ such that ϕ restricts on C^{α} to ϕ_{22} and on P^{β} and Q^{β} to ϕ_{11}.
ii. For any choice of $\alpha, \beta \in[m]$ there is a C_{5}-free 2 -colouring ϕ of \mathcal{G}^{*}, with $\phi\left(f_{0}^{C}\right)=1$, that restricts on C^{i}, P^{j} and Q^{j} to ϕ_{12} or ϕ_{21} for all $i \neq \alpha$ and $j \neq \beta$.
iii. There exists some constant c independent of m, such that $\left|V\left(\mathcal{G}^{*}\right)\right|<c m$.

Proof. For item (i), let ϕ be a C_{5}-free 2-colouring of \mathcal{G}^{*} with $\phi\left(f_{0}^{C}\right)=1$. By Lemma 3.6 (i), there exists $\alpha \in[m]$ such that $\phi\left(f_{\alpha}^{C}\right)=\phi\left(f_{\alpha+1}^{C}\right)=2$. As ϕ is C_{5}-free on
the positive senders connecting these edges to C^{α}, ϕ restricts on C^{α} to ϕ_{22}. The sender from f_{0}^{C} to f_{0}^{P} ensures that $\phi\left(f_{0}^{P}\right)=2$, and so we can argue similarily that for some $\beta \in[m], \phi$ restricts on P^{β} and Q^{β} to ϕ_{11}.

Item (ii) follows from item (ii) of Lemma 3.6 just as (i) followed from (i) of Lemma 3.6.

Item (iii) follows from property (iii) of Lemma 3.6 and the fact that \mathcal{G}^{*} consists of two copies of T and $15 \cdot m+1$ senders. Indeed, $c=2 c_{T}+16 s$ is sufficient, where s is number of vertices of the largest sender used.

4.3. The Graph $\mathcal{G}(\mathcal{J})$

For copies C^{\prime} of C and P^{\prime} of P, we say we 'complete C^{\prime} and P^{\prime} to a copy of $G_{0}{ }^{\prime}$ to mean we add all edges between the copies of c_{1}, c_{2}, and c_{3} in C^{\prime} and the copies of p_{1}, and p_{2} in P^{\prime}.

For any set $\mathcal{J}=\left(I_{1}, \ldots I_{m}\right)$ of subsets of $[m]$ construct $\mathcal{G}=\mathcal{G}(\mathcal{J})$ from \mathcal{G}^{*}, by adding only edges, as follows.

For each $i, j \in[m]$

- complete C^{i} and P^{j} to a copy of G_{0} if $i \in I_{j}$, and
- complete C^{i} and Q^{j} to a copy of G_{0} otherwise.

Let $E^{i j}$ be the edges added between C^{i} and P^{j} or Q^{j}. Let $E^{\mathcal{J}}=\mathcal{G} \backslash \mathcal{G}^{*}$ be the union of all the $E^{i j}$.

Claim 4.3. \mathcal{G} is 2-Ramsey for C_{5}.
Proof. Towards contradiction, assume that there is a C_{5}-free 2-colouring ϕ of \mathcal{G}. By item (i) of Claim 4.2, there are $\alpha, \beta \in[m]$ such that ϕ restricts on C^{α} to ϕ_{22} and on P^{β} and Q^{β} to ϕ_{11}, (or vice versa). By construction C^{α} and either P^{β} or Q^{β} induce a copy of G_{0}, and so ϕ restricted to this copy of G_{0} contradicts item (i) of Claim 4.1.

Claim 4.4. For any edge e of $E^{\mathcal{J}}, \mathcal{G} \backslash\{e\}$ has a C_{5}-free 2-colouring.
Proof. Assume, without loss of generality, that e is in E^{11}. We define a C_{5}-free 2-colouring ϕ of $\mathcal{G} \backslash\{e\}$.

By item (ii) of Claim 4.2 there is a 2-colouring of \mathcal{G}^{*} that restricts on C^{1} to ϕ_{11}, on P^{1} and Q^{1} to ϕ_{22}, and on all other C^{i}, P^{j} and Q^{j} to ϕ_{12} or ϕ_{21}. Define ϕ to restrict to such a colouring on \mathcal{G}^{*}.

For every $i, j \in[m]$ with not both $i, j=1$, there is, by item (ii) of Claim 4.1, a C_{5}-free 2-colouring of the copy of G_{0} in \mathcal{G}^{*} induced by the vertices of $C^{i} \cup P^{j} \cup Q^{j}$, which agrees with ϕ on C^{i}, P^{j} and Q^{j}. Define ϕ on $E^{i j}$ to agree with this colouring.

By item (iii) of Claim 4.1 there is a C_{5}-free 2 -colouring of the graph induced by $C^{1} \cup P^{1} \cup Q^{1}$ (a copy of G_{0} less an edge of E), which agrees with ϕ on C^{1}, P^{1} and Q^{1}. Define ϕ on E^{11} to agree with this colouring.

We now show that this 2-colouring ϕ of $\mathcal{G} \backslash\{e\}$ is C_{5}-free. By construction it is C_{5}-free on \mathcal{G}^{*} and on the (partial) copies of G_{0} induced by any C^{i} and any P^{j}
or Q^{j}. So we show that the only copies of C_{5} in \mathcal{G} are entirely within one of these graphs. Let C_{0} be a copy of C_{5} in \mathcal{G} not entirely within \mathcal{G}^{*}. As $E^{\mathcal{J}}$ is bipartite, C_{0} must contain edges of \mathcal{G}^{*}. As the vertices of \mathcal{G}^{*} that are incident to edges of $E^{\mathcal{J}}$ are distance at least 6 apart, unless they are the endpoints in a copy of the 3 -path P in one of C^{i}, P^{j} or Q^{j}, C_{0} must intesect \mathcal{G}^{*} in one of these paths. Thus it is entirely within the copy of G_{0} induced by some C^{i} and some P^{j} or Q^{j}.

4.4. The proof of Theorem 1.1

The proof is by induction on r. The most difficult part, the base case $r=2$ is almost done. Indeed, let c_{2} be the constant c from Claim 4.2 (iii). By Lemma 2.1 it is enough to show that for odd $m \geq 3$ there are $2^{m^{2}}$ different labelled graph on at most $c_{2} m$ vertices that are 2-Ramsey minimal for C_{5}. For each of the $2^{m^{2}}$ choices of \mathcal{J} of m subsets of $[m]$, the graph $\mathcal{G}(\mathcal{J})$ is 2-Ramsey by Claim 4.3, and any 2-Ramsey-minimal subgraph of it contains all of $E^{\mathcal{J}}$ by Claim 4.4. Since $E^{\mathcal{J}}$ is different for different choices of \mathcal{J}, this gives us $2^{m^{2}}$ different 2-Ramsey-minimal graphs on at most cm vertices. This is enough.

For the induction on r we use the following construction. Let \mathcal{G}_{r-1} be some graph on at most $c_{r-1} m$ vertices that is $(r-1)$-Ramsey minimal for H. Construct \mathcal{G}_{r} from \mathcal{G}_{r-1} as follows.
i. Add a new vertex v_{0}.
ii. For each vertex $v \in V\left(\mathcal{G}_{r-1}\right)$ add a new vertex v^{\prime} and the edges $v_{0} v^{\prime}$ and $v^{\prime} v$.
iii. Add a new edge e_{0}.
iv. Connect every edge added in step (ii) to e_{0} with a positive sender.

Clearly \mathcal{G}_{r} has less than $2 s\left|V\left(\mathcal{G}_{r-1}\right)\right|$ vertices where s is the number of vertices in a positive sender. So \mathcal{G}_{r} has less then $c_{r} m$ vertices where $c_{r}=2 s c_{r-1}$.

Claim 4.5. \mathcal{G}_{r} is r-Ramsey for C_{5}.
Proof. Assume, towards contradiction, that \mathcal{G}_{r} has a C_{5}-free r-colouring ϕ. Then ϕ gets the same colour on all edges added in steps (ii) as they are all joined to e_{0} with positive senders. Let this colour be r. Every edge in \mathcal{G}_{r-1} completes a C_{5} with such edges, so must get some colour other than r, so ϕ restricted to \mathcal{G}_{r-1} is a C_{5}-free $(r-1)$-colouring. As this is impossible, \mathcal{G}_{r} is r-Ramsey for C_{5}.

Claim 4.6. For any edge $e \in \mathcal{G}_{r-1}, \mathcal{G}_{r} \backslash\{e\}$ has a C_{5}-free $(r-1)$-colouring.
Proof. Let e be an edge of \mathcal{G}_{r-1}. As \mathcal{G}_{r-1} is $(r-1)$-Ramsey-minimal there is a C_{5}-free $(r-1)$-colouring ϕ of $\mathcal{G}_{r-1} \backslash\{e\}$. Extend ϕ to a r-colouring of \mathcal{G}_{r} by setting $\phi(f)=r$ on all edges f introduced in step (ii) of the construction, and on the edge e_{0}. As these edges form a forest, this introduces no monochromatic copies of C_{5}. As the edges e_{0} and f have the same colour for any f introduded in step (ii), ϕ can be extended to a C_{5}-free colouring of sender between them which was added in step (iv) of the construction. By Proposition 3.2, this ϕ is a C_{5}-free r-colouring of $\mathcal{G}_{r} \backslash\{e\}$.

Now assume that the theorem has been proved for $r-1$, that is, that there are $2^{m^{2}}$ different labelled graphs on at most $c_{r-1} m$ vertices that are $(r-1)$-Ramsey minimal for H. From each such graph \mathcal{G}_{r-1} the above construction gives a graph \mathcal{G}_{r} on at most $c_{r} m$ vertices, which by Claim 4.5, is r-Ramsey for C_{5}.

By Claim 4.6 the r-Ramsey-minimal subgraphs of \mathcal{G}_{r} and \mathcal{G}_{r}^{\prime} constructed from different \mathcal{G}_{r-1} and $\mathcal{G}_{r-1}^{\prime}$ are different. So we have $2^{m^{2}}$ different graphs on at most $c_{r} m$ vertices that are r-Ramsey-minimal for C_{5}. The theorem thus holds for r, and so follows by induction.

5. Concluding Remarks

In [8] we observed that no bipartite graph can be highly 2-Ramsey-infinite, but we expect that any graph that is non-bipartite and 2-Ramsey-infinite, is highly 2-Ramsey-infinite.

Apart from C_{5} being non-bipartite, the important aspects for our proof that C_{5} is highly 2-Ramsey-infinite are the existence of positive and negative signal senders for C_{5}, and the fact that C_{5} has a vertex of degree 2 (in the construction of G_{0}).

It was proved in [2] that senders exist for all 3-connected graphs H. However, such graphs cannot have vertices of degree 2. It would be interesting to extend the construction of the graphs $\mathcal{G}(\mathcal{J})$ from this paper work for other 3-connected graphs. I cannot see how to do this though. Similarily, it would be interesting to construct senders for more 2-connected graphs. This also seems to be difficult.

References

[1] B. Bollobás, J. Donadelli, Y. Kohayakawa, R.H. Schelp, Ramsey minimal graphs, J. of the Brazilian Computer Society, $7(3)(2002)$, 27-37.
[2] S. Burr, J. Nešetřil,V. Rödl, On the use of senders in generalized Ramsey theory for graphs, Discrete Math., 54(1)(1985), 1-13.
[3] R. Faudree, Ramsey minimal graphs for forests, Ars Combin., 31(1991), 117-124.
[4] J. Nešetřil, V. Rödl, Partitions of vertices, Comment. Math. Univ. Carolinae, $17(1)(1976), 85-95$.
[5] J. Nešetřil, V. Rödl, The structure of critical Ramsey graphs, Acta Math. Acad. Sci. Hungar., 32(3-4)(1978), 295-300.
[6] V. Rödl, A. Ruciński, Threshold functions for Ramsey properties, J. Amer. Math. Soc., 8(4)(1995), 917-942.
[7] V. Rödl, M. Siggers, On Ramsey Minimal Graphs, SIAM J. Discrete Math., $22(2)(2008), 467-488$.
[8] M. Siggers, On Highly Ramsey Infinite Graphs, J. Graph Theory, 59(2)(2008), 97-114.

