Bandwidth Enhancement of an Aperture Coupled Microstrip Patch Antenna Using a Shunt Stub

병렬 스터브를 이용한 개구면 결합 마이크로스트립 패치 안테나의 대역폭 확장

  • Koo, Hwan-Mo (School of Electronic Engineering, Soongsil University) ;
  • Yoon, Young-Min (School of Electronic Engineering, Soongsil University) ;
  • Kim, Boo-Gyoun (School of Electronic Engineering, Soongsil University)
  • 구환모 (숭실대학교 정보통신전자공학부) ;
  • 윤영민 (숭실대학교 정보통신전자공학부) ;
  • 김부균 (숭실대학교 정보통신전자공학부)
  • Received : 2011.11.01
  • Accepted : 2012.02.17
  • Published : 2012.02.25

Abstract

An impedance bandwidth enhancement method of an aperture coupled microstrip patch antenna (ACMPA) using a shunt stub is investigated. The conventional ACMPA with a H-shaped coupling aperture is designed and the electrical parameters for the equivalent circuit of the designed conventional ACMPA are extracted. A method for the enhancement of the impedance bandwidth of the ACMPA using a tuning stub connected in shunt with the feed line is presented. The -10 dB return loss impedance bandwidth of the ACMPA with a shunt stub is increased up to about 14 %. The maximum impedance bandwidth of the corresponding ACMPA without a shunt stub is 5.4 %. The increase of the impedance bandwidth of the ACMPA with a shunt stub compared to that of the corresponding ACMPA without a shunt stub is about 160 %.

병렬 스터브를 이용하여 개구면 결합 마이크로스트립 패치 안테나 (ACMPA)의 임피던스 대역폭을 넓히는 방법에 대해 연구하였다. H-모양의 개구면을 가지는 일반적인 ACMPA를 설계하고 등가회로의 전기적 파라미터를 추출하였다. 급전선로에 병렬 스터브를 삽입하여 ACMPA의 임피던스 대역폭을 확장시키는 방법을 제시하였다. 병렬 스터브를 삽입한 ACMPA의 -10dB 임피던스 대역폭은 최대 약 14 %로 일반적인 ACMPA의 최대 임피던스 대역폭 5.4 %와 비교하여 대역폭이 약 160 % 증가함을 볼 수 있었다.

Keywords

References

  1. D. M. Pozar, "Microstrip antenna aperture coupled to a microstripline," Electron. Lett., vol. 21, no. 2, pp. 49-50, Jan, 1985. https://doi.org/10.1049/el:19850034
  2. S. D. Targonski, R. B. Waterhouse, and D. M. Pozar, "Design of Wide-Band Aperture-Stacked Patch Microstrip Antennas," IEEE Trans. Antennas Propagat., vol. 46, no. 9, pp. 1245-1251, Sep. 1998.
  3. Y. Lu, H. Wang and D. G. Fang, "A Novel Wideband Aperture-Coupled Circularly Polarized Stacked Patch Antenna," The 2006 4th Asia-Pacific Conference on Environmental Electromagnetics, pp. 904-907, August, 2006.
  4. S. K. Pavuluri, C. Wang, and A. J. Sangster, "High Efficiency Wideband Aperture-Coupled Stacked Patch Antennas Assembled Using Millimeter Thick Micromachined Polymer Structure," IEEE Trans. Antennas Propagat., vol. 58, no. 11, pp. 3616-3621, Nov. 2010. https://doi.org/10.1109/TAP.2010.2071334
  5. L. Wang, C. Liao, L. Chang, Q. Gao, and Q. Yang, "Analysis and Design of a Novel Broadband Aperture-Coupled Microstrip Antenna," Proceedings of the 2011 Fourth International Conference on Intelligent Computation Technology and Automation, vol. 2, 2011.
  6. D. M. Pozar and S. D. Targonski, "Improved Coupling For Aperture Coupled Microstrip Antennas," Electron. Lett., vol. 27, no. 13, pp. 1129-1131, June, 1991. https://doi.org/10.1049/el:19910705
  7. R. Garg, Microstrip Antenna Design Handbook. Artech House, 2001
  8. D. Ahn, JS Park, CS Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Trans. Microwave Theory Tech., vol. 49, No. 1, pp. 86-93, Jan. 2001. https://doi.org/10.1109/22.899965
  9. K.C. Gupta, Microstrip Lines and Slotlines 2nd Ed. Artech House, 1996.
  10. D. M. Pozar, Microwave Engineering 3rd Ed. Wiley, 2005.