Taylor Series Based Discretization for Nonlinear Input-delay Systems

Taylor Series를 이용한 입력 시간지연 비선형 시스템 일반적인 이산화

  • Park, Yu-Jin (Electronics and Information Department, Chonbuk National University) ;
  • Lim, Dae-Youn (Electronics and Information Department, Chonbuk National University) ;
  • Chong, Kil-To (Electronics and Information Department, Chonbuk National University)
  • 박유진 (전북대학교 전자정보공학부) ;
  • 임대영 (전북대학교 전자정보공학부) ;
  • 정길도 (전북대학교 전자정보공학부)
  • Received : 2011.08.02
  • Accepted : 2012.02.29
  • Published : 2012.03.25

Abstract

A general discretization method for input-driven nonlinear continuous time-delay systems is proposed, which can be applied to general order sampling hold assumptions. It is based on a combination of Taylor series expansion and the theories of sampling and hold. The mathematical structure of the new discretization scheme is introduced in detail. The performance of the proposed discretization procedure is evaluated by two degrees of systems. The results show that the proposed scheme is applicable to control systems.

본 논문에서는 입력에 시간지연이 있는 연속 비선형 시스템의 일반적인 이산화를 위해 높은 차수의 샘플링 보관법을 제안한다. 제안한 방법은 테일러 시리즈 확장, 샘플링 이론과 보관법의 조합을 기초로 한다. 새로운 이산화 방법의 수학적인 구조에 대해 세부적으로 유도하였으며, 제안한 이산화 방법에 대한 성능을 2차 시스템에 대한 시뮬레이션을 통해 검증하였다.

Keywords

References

  1. Emmanuel Moulay, Michel Dambrineb, Nima Yeganefar, Wilfrid Perruquetti, 2008, Finite-time stability and stabilization of time-delay systems. Systems & Control Letters 57, pp,561-566. https://doi.org/10.1016/j.sysconle.2007.12.002
  2. Park Ji Hyang, Chong Kil To, Kazantzis Nikolaos and Parlos Alexander G, 2004, Time-Discretization of Nonlinear Systems with Delayed Multi-Input Using Taylor Series, KSME International Journal, Vol. 18 No. 7, pp. 1107-1120.
  3. Park Ji Hyang, Chong Kil To, Kazantzis Nikolaos and Parlos Alexander G, 2004, Time-Discretization of Non-affine Nonlinear System with Delayed Input Using Taylor-Series, KSME International Journal, Vol. 18 No. 8, pp. 1297-1305.
  4. Nilsson, J., 1998, Real-Time Control Systems With Delays, Ph.D. Dissertation, Dept. of Automatic Control, Lund Institute of Technology, Lund, Sweden.
  5. Vaccaro, R. J., 1995, Digital Control, McGraw-Hill, New York.
  6. Kazantzis, N., and Kravaris, C., 1999, Time- Discretization of Nonlinear Control Systems via Taylor Methods, Comput. Chem. Eng., 23, pp. 763-784. https://doi.org/10.1016/S0098-1354(99)00007-1
  7. Nešiæ, D., Teel, A. R., and Kokotoviæ, P. V., 1999, Sufficient Conditions for Stabilization of Sampled-Data Nonlinear Systems via Discrete-Time Approximations. Syst. Control Lett., 38, pp. 259-270. https://doi.org/10.1016/S0167-6911(99)00073-0
  8. Jean-Jacques E. Slotine, Weiping Li. 1991, Applied Nonlinear Control. Prentice Hall/Pearson.
  9. Nikolaos Kazantzis, K.T.Chong, J.H.Park, Alexander G. Parlos 2005, Control-Relevant Discretization of Nonlinear Systems With Time-Delay Using Taylor-Lie Series. Journal of Dynamic Systems, Measurement, and Control, Vol.127 No.3, pp.153-159. https://doi.org/10.1115/1.1870046
  10. Kazantzis, N., and Kravaris, C., 1997, System-Theoretic Properties of Sampled-Data Representations of Nonlinear Systems Obtained via Taylor-Lie Series. Int. J. Control, 67, pp.997-1020. https://doi.org/10.1080/002071797223901