DOI QR코드

DOI QR Code

${\beta}$-Cyclodextrin을 사용한 새로운 Polyol 합성 및 낮은 열전도도와 높은 강도를 갖는 경질 PU Foam의 제조

Synthesis of Novel Polyol Based on ${\beta}$-Cyclodextrin and Its Rigid PU Foam with Low Thermal Conductivity and High Strength

  • 박주한 (부산대학교 고분자공학과) ;
  • 김태윤 (부산대학교 고분자공학과) ;
  • 김동호 (부산대학교 고분자공학과) ;
  • 문진복 (경남정보대학교 신발패션산업과) ;
  • 정일두 (부산대학교 고분자공학과)
  • Park, Juhan (Department of Polymer Science & Engineering, Pusan National University) ;
  • Kim, Taeyoon (Department of Polymer Science & Engineering, Pusan National University) ;
  • Kim, Dong Ho (Department of Polymer Science & Engineering, Pusan National University) ;
  • Moon, Jin-Bok (Department of Shoe Fashion Industry, Kyungnam College University of Information and Technology) ;
  • Chung, Ildoo (Department of Polymer Science & Engineering, Pusan National University)
  • 투고 : 2012.09.25
  • 심사 : 2012.11.30
  • 발행 : 2012.12.31

초록

${\beta}$-cyclodextrin은 다른 분자를 포접하여 inclusion complex (포접착물)를 만드는 특성을 가지고 있기 때문에 의약품, 농약, 식품, 화장품, 산화방지제, 휘발방지제, 흡습방지제, 퇴색방지제, 유화제 등의 다양한 용도로 사용되고 있다. 이러한 장점에도 불구하고 ${\beta}$-cyclodextrin은 물이나 유기용매에 대한 용해도가 낮아 사용에 제약을 받아왔다. 본 연구에서는 이러한 문제를 해결하기 위해서 Bisphenol-A나 폴리우레탄(PU) 발포제인 cyclopropane에 대한 포접특성을 갖고 물이나 유기용매에 대한 용해도가 향상된 polyol type의 ${\beta}$-cyclodextrin 유도체를 합성한 후 그 특성을 고찰하였다. 연구결과 합성된 polyol을 사용해서 제조한 경질 PU foam은 기존의 polyol과 비교해서 더 우수한 열전도 특성과 압축강도를 나타내었다.

Although ${\beta}$-cyclodextrin (${\beta}$-CD) has been used as medicine, agrichemical, food, cosmetic, antioxidant, anti-volatile agent, anti-hygroscopic agent, fading-protecting agent, and emulsifier due to its ability to form inclusion complex by enclosing another molecule (guest molecule), it has been restricted in practical application because of its low solubility in water and organic solvent. In this study, ${\beta}$-CD derivative as a new polyol with inclusion characteristics against Bisphenol A and cyclopropane, foaming agent for polyurethane (PU), and with improved solubility was synthesized, characterized and used to formulate rigid PU foam with better thermal conductivity and compressive strength compared to that from commercial polyols.

키워드

과제정보

연구 과제 주관 기관 : 부산대학교

참고문헌

  1. Cyclodextrin and Their Industrial uses, D. Duchene Ed. (1987).
  2. 화학대사전, 4, pp. 567B, cyclic dextrin (1964).
  3. 화학상품, CHEMEX p. 1707, cyclodextrin (2004).
  4. M. I. Bender, and M. Koiyama, Cyclodextrin Chemistry, Springer Verlag, Berlin-Heidelberg-New York (1978).
  5. J. Boger, R. corcoran, and J. M. Lehn, Helv. Chim. Acta, 61, 2190 (1978). https://doi.org/10.1002/hlca.19780610622
  6. A. Croft and R. A. Bartsch, Tetrahedron, 39, 1417 (1983). https://doi.org/10.1016/S0040-4020(01)88551-3
  7. D. French, Adv. Carbohydr. Chem., 12, 189 (1987).
  8. B. Casu, G. G. Gallo, M. Reggiani, and A. Vigevani, Chem. Soc. Spec. Publ., 23, 217 (1968).
  9. H. Liu, X. Wang, Y. Gu, and W. Guo, Molecules, 8, 67 (2003). https://doi.org/10.3390/80100067
  10. D. H. Kim, I. Chung, and G. N. Kim, J. Adhes. Interf., 11, 26 (2010).
  11. S. H. Shin, B. Y. Jeong, I. Chung, N. J. Jo, J. M. Cheon, and J. H. Chung, J. Adhes. Interf., 11, 100 (2010).
  12. S. George, J. Wiley & Son, Infrared and Raman Characteristic Group Frequencies, LTD (2001).
  13. D. L. Pavia, Introduction to Spectroscopy, Western Washington University (1996).
  14. Cyclodextrin technology, Jozesef szejtli, pp.1-82 (1992).
  15. H. Akira, P. Miyuko, and L. Jun, Macromolecules, 28, 8406 (1995). https://doi.org/10.1021/ma00128a060