DOI QR코드

DOI QR Code

무유화중합에 의한 단분산 Submicron 크기의 고분자 미립자의 제조

Preparation of Monodisperse Submicron-Sized Polymeric Particles by Emulsifier-Free Emulsion Polymerization

  • 이기창 (경상대학교 공과대학 나노신소재공학과)
  • Lee, Ki-Chang (Department of Polymer Science and Engineering, School of Nano and Advanced Materials Engineering, Gyeongsang National University)
  • 투고 : 2012.07.26
  • 심사 : 2012.08.30
  • 발행 : 2012.08.31

초록

음이온개시제인 $K_2S_2O_8$ (KPS)와 양이온개시제인 2,2' azobis(2-methyl-propionamidine) dihydrochloride (AIBA)를 이용하여 MMA와 BMA 단량체간의 무유화공중합을 성공적으로 수행하여 PSD가 1.002~1.008인 단분산성이 우수한 poly(BMA-co-MMA)와 PBMA 라텍스들을 제조하였다. 실험결과, 160~494 nm 범위의 수평균입자경과 (1.25~7.55) ${\times}10^4$ 범위의 수평균분자량을 나타내었다. MMA/BMA 유화중합에 따르는 중합속도와 단량체 및 개시제 농도, DVB/EGDMA 가교제 농도, 중합온도 변화에 따르는 수평균입자경과 수평균분자량의 영향을 조사하였다. MMA/BMA 단량체 중 MMA 농도가 증가함에 따라 중합속도가 증가하였으며 일반적으로 이들 라텍스의 평균입자경과 평균분자량은 MMA/BMA 단량체중량비, 단량체량, 개시제량, 중합온도에 따라 쉽게 조절됨을 발견하였다.

Narrowly dispersed poly(BMA-co-MMA) and PBMA latices (PSD : 1.002~1.008) were synthesized successfully by surfactant-free emulsion polymerization with 2,2' azobis(2-methyl-propionamidine) dihydrochloride (AIBA) and $K_2S_2O_8$ (KPS). The number average particle diameter and the number average molecule weight were found to be 160~494 nm and (1.25~7.55) ${\times}10^4$, respectively. The influences of BMA/MMA ratio, monomer and initiator concentrations, addition of DVB/EGDMA crosslink agent, and polymerization temperature on the polymerization rates and on the particle size and molecular weight were studied. The rate of polymerization increased with increasing MMA concentration in BMA/MMA weight ratio. The particle diameter as well as the polymer molecular weight could be controlled easily by controlling the BMA/MMA weight ratio, monomer concentration, AIBA and KPS concentration, and polymerization temperature.

키워드

과제정보

연구 과제번호 : 풀컬러 색변환 전자스킨을 위한 콜로이드 광결정 필름소재개발

연구 과제 주관 기관 : 지식경제부

참고문헌

  1. K. Nakamura, Polymer, 4, 309 (1995).
  2. Y. N. Xia, Adv. Mater., 13, 369 (2001). https://doi.org/10.1002/1521-4095(200103)13:6<369::AID-ADMA369>3.0.CO;2-T
  3. Y. Xia, B. Gates, Y. Yin, and Y. Lu, Adv. Mater., 12, 693 (2000). https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<693::AID-ADMA693>3.0.CO;2-J
  4. M. Petro, F. Svec, and J. M. J. Frechet, Anal. Chem., 69, 3131 (1997). https://doi.org/10.1021/ac970365a
  5. J. G. McGrath, R. D. Bock, J. M. Cathcart, and L. A. Lyon, Chem. Mater., 19, 1584 (2007). https://doi.org/10.1021/cm061931y
  6. B. Lange, F. Fleischhaker, and R. Zentel, Phys. Status Solidi A, 204, 3618 (2007). https://doi.org/10.1002/pssa.200776401
  7. J. Ugelstad, Adv. Organomet. Chem., 13, 507 (1991).
  8. S. W. Choi, Y. C. Yeh, Y. Zhang, H. W. Sung, and Y. Xia, Small, 6, 1492 (2010). https://doi.org/10.1002/smll.201000544
  9. S. Kawaguchi, T. Ina, S. Momose, T. Kikuchi, R. Kohase, M. Kikuchi, and K. Naga, Kobunshi Ronbunshu, 64, 62 (2007). https://doi.org/10.1295/koron.64.62
  10. Y. Li, Z. Sun, J. Zhang, K. Zhang, Y. Wang, Z. Wang, X. Chen, S. Zhu, and B. Yang, J. Colloid Interface Sci., 325, 567 (2008). https://doi.org/10.1016/j.jcis.2008.06.019
  11. S. Kim, Y. G. Seo, Y. Cho, J. Shin, S. C. Gil, and W. Lee, Bull. Korean Chem. Soc., 31, 1891 (2010). https://doi.org/10.5012/bkcs.2010.31.7.1891
  12. K. C. Lee, M. S. El-Aasser, and J. W. Vanderhoff, J. Appl. Polym. Sci., 42, 3133 (1991). https://doi.org/10.1002/app.1991.070421207
  13. Z. Song and G. W. Poehlein, J. Colloid Interface Sci., 128, 486 (1989). https://doi.org/10.1016/0021-9797(89)90364-0
  14. Z. Song and G. W. Poehlein, J. Colloid Interface Sci., 128, 501 (1989). https://doi.org/10.1016/0021-9797(89)90365-2
  15. T. Tanrisever, O. Okay, and I. C. Sonmezoglu, J. Appl. Polym. Sci., 61, 485 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960718)61:3<485::AID-APP11>3.0.CO;2-0
  16. X. Chen, Z. Cui, Z. Chen, K. Zhang, G. Lu, G. Zhang, and B. Yang, Polymer, 43, 4147 (2002). https://doi.org/10.1016/S0032-3861(02)00262-8
  17. C. E. Reese and S. A. Asher, J. Colloid Interface Sci., 248, 41 (2002). https://doi.org/10.1006/jcis.2001.8193
  18. S. H. Kim, B. J. Kim, D. I. Kwon, and K. H. Park, Polymer (Korea), 28, 524 (2004).
  19. M. Egen and R. Zentel, Macromol. Chem. Phys., 205, 1479 (2004). https://doi.org/10.1002/macp.200400087
  20. B. Pierre, A. Marjan, and I. Mittsuo, J. Appl. Polym. Sci., 67, 1711 (1998). https://doi.org/10.1002/(SICI)1097-4628(19980307)67:10<1711::AID-APP4>3.0.CO;2-M
  21. Y. Tang, S. Luo, and Z. Fu, Acta. Polym. Sin., 6, 887 (2003).
  22. L. Jin, Z. Liu, Q. Xu, and Y. Li, J. Appl. Polym. Sci., 99, 1111 (2006). https://doi.org/10.1002/app.22168
  23. Z. Luo, C. Zou, S. Syed, L. A. Syarbaini, and G. Chen, Colloid Polym. Sci., 290, 141 (2012). https://doi.org/10.1007/s00396-011-2532-7
  24. J. Ugelstad, P. C. Mark, K. G. Kaggerud, J. Ellingsen, and A. Berge, Adv. Colloid Interface Sci., 13, 101 (1980). https://doi.org/10.1016/0001-8686(80)87003-5
  25. Y. Almog, S. Reigh, and M. Levy, Br. Polym. J., 14, 131 (1982). https://doi.org/10.1002/pi.4980140402
  26. J. C. Seferis, Refractive Indices of Polymers in Polymer Handbook, J. Brandrup, E. H. Immergut, and E. A. Grulke Ed., p.578, John Wiley and Sons, New York (1999).
  27. J. W. Vanderhoff, J. Polym. Sci., Polym. Symp., 72, 161 (1985).
  28. R. M. Fitch and C. H. Tsai, Polymer Colloids, pp.73-103, Plenum, New York (1971).
  29. G. Odian, Principles of Polymerization, 3rd ed, John Wiley and Sons, New York (1991).
  30. K. C. Lee and H. A. Wi, J. Appl. Polym. Sci., 115, 297 (2010). https://doi.org/10.1002/app.31118