과제정보
연구 과제 주관 기관 : 한국연구재단
참고문헌
- 김익수∙최 윤∙이충렬∙이용주∙김병직∙김지현. 2005. 한국어류대도감. 교학사, 615pp.
- 김화선∙김유희∙조재윤∙윤길하∙하봉석. 1999. 천연산 각시붕어(Rhodeus uyekii) 혼인색의 색소 조성. 한국수산학회지, 32: 520-524
- 송호복∙권오길. 1995. 줄납자루, Acheilognathus yamatsutae Mori (Cyprinidae)의 산란 조건. 한국어류학회지, 7: 18-24.
- 안철민. 1995a 각시붕어, Rhodeus uyekii의 생식주기. 한국어류학회지, 7: 33-42.
- 안철민. 1995b 각시붕어, Rhodeus uyekii의 생식주기에 미치는 광주기와 수온의 영향. 한국어류학회지, 7: 43-55.
- 채병수. 2001. 각시붕어, Rhodeus uyekii의 (Pisces: Cyprinidae)의 산란관의 신장. 한국어류학회지, 13: 111-116.
- Agbali, M., M. Reichard, A. Bryjova, J. Bryja and C. Smith. 2010. Mate choice for nonadditive genetic benefits correlate with MHC dissimilarity in the rose bitterling (Rhodeus ocellatus). Evolution, 64: 1683-1696. https://doi.org/10.1111/j.1558-5646.2010.00961.x
- Andersson, M. 1994. Sexual selection. Princeton University Press, 624pp.
- Akai, Y. and R. Arai. 1998. Rhodeus sinensis, a senior synonym of R. lighti and R. uyekii (Acheilognathinae, Cyprinidae). Ichthyol. Res., 45: 105-110. https://doi.org/10.1007/BF02678582
- Barber, I., S. a. Arnott, V. a. Braithwaite, J. Andrew and F. a. Huntingford 2001. Indirect fitness consequences of mate choice in sticklebacks: offspring of brighter males grow slowly but resist parasitic infections. Proc. Roy. Soc. Lond. B., 268: 71-6. https://doi.org/10.1098/rspb.2000.1331
- Baube, C. 1997. Manipulations of signaling environment affect male competitive success in three-spined sticklebacks. Anim. Behav., 53: 819-833. https://doi.org/10.1006/anbe.1996.0347
- Boake, C.R.B. 1989. Repeatability: its role in evolutionary studies of mating behavior. Evol. Ecol., 3: 173-182. https://doi.org/10.1007/BF02270919
- Candolin, U. 2003. The use of multiple cues in mate choice. Biol. Rev., 78: 575-595. https://doi.org/10.1017/S1464793103006158
- Casalini, M., M. Agbali, M. Reichard, M. Konecna, A. Bryjova and C. Smith. 2009. Male dominance, female mate choice, and intersexual conflict in the rose bitterling (Rhodeus ocellatus). Evolution, 63: 366-376. https://doi.org/10.1111/j.1558-5646.2008.00555.x
- Eberhard, W.G. 1996. Female control: sexual selection by cryptic female choice. Princeton University Press, 472pp.
- Endler, J. A. 1980. Natural selection on color patterns in Poecilia reticulata. Evolution, 34: 76-91. https://doi.org/10.2307/2408316
- Fox, D. 1976. Animal Biochromes and Structural Colours. University of California Press, 433pp.
- Godin, J-G. J. and L.A. Dugatkin. 1995. Variability and repeatability of female mating preference in the guppy. Anim. Behav., 49: 1427-1433. https://doi.org/10.1016/0003-3472(95)90063-2
- Goodwin, T.W. 1984. The biochemistry of the carotenoids: animal, vol. 2. Chapman and Hall. 224pp.
- Grether, F.G. 2000. Carotenoid limitation and mate preference evolution: a test of the indicator hypothesis in Guppies (Poecilia reticulate). Evolution, 54: 1712-1724. https://doi.org/10.1111/j.0014-3820.2000.tb00715.x
- Griggio, M., C. Biard, D.J. Penn and H. Hoi. 2011. Female house sparrows "count on" male genes: experimental evidence for MHC-dependent mate preference in birds. BMC Evol. Biol., 11: 44. https://doi.org/10.1186/1471-2148-11-44
- Hamilton, W.D. and M. Zuk. 1982. Heritable true fitness and bright birds: a role for parasites? Science, 218: 384-387. https://doi.org/10.1126/science.7123238
- Hill, G.E. and R. Montgomerie. 1994. Plumage colour signals nutritional condition in the house finch. Proc. Roy. Soc. Lond. B., 258: 47-52. https://doi.org/10.1098/rspb.1994.0140
- Houde, A.E. and A.J. Torio. 1992. Effect of parasitic infection on male color pattern and female choice in guppies. Behav. Ecol., 3: 346-351. https://doi.org/10.1093/beheco/3.4.346
- Hughes, K.A., F.H. Rodd and D.N. Reznick. 2005. Genetic and environmental effects on secondary sex traits in guppies (Poecilia reticulata). J. Evol. Biol., 18: 35-45. https://doi.org/10.1111/j.1420-9101.2004.00806.x
- Jennions, M.D. and M. Petrie. 1997. Variation in mate choice and mating preferences: a review of causes and consequences. Biol. Rev., 72: 283-327. https://doi.org/10.1017/S0006323196005014
- Johnstone, R.A. 1996. Multiple display in animal communication: 'backup signals' and 'multiple messages'. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 351: 329-338. https://doi.org/10.1098/rstb.1996.0026
- Jordan, W.C. and M.W. Bruford. 1998. New perspectives on mate choice and the MHC. Heredity, 81: 127-133. https://doi.org/10.1046/j.1365-2540.1998.00428.x
- Kodric-Brown, A. 1989. Dietary carotenoids and male mating success in the guppy: an environmental component to female choice. Behav. Ecol. Sociobiol., 25: 393-401. https://doi.org/10.1007/BF00300185
- Kirkpatrick, M. and M. Ryan. 1991. The evolution of mating preferences and the paradox of the lek. Nature, 350: 33-38. https://doi.org/10.1038/350033a0
- Kokko, H., R. Brooks, M.D. Jennions and J. Morley. 2003. The evolution of mate choice and mating biases. Proc. Roy. Soc. Lond. B., 270: 653-664. https://doi.org/10.1098/rspb.2002.2235
- Kokko, H., M.D. Jennions and R. Brooks. 2006. Unifying and testing models of sexual selection. Ann. Rev. Ecol. Evol. Syst., 37: 43-66. https://doi.org/10.1146/annurev.ecolsys.37.091305.110259
- Mays Jr, H.L. and G.E. Hill. 2004. Choosing mates: good genes versus genes that are a good fit. Trends Ecol. Evol.,19: 554-559. https://doi.org/10.1016/j.tree.2004.07.018
- Milinski, M. and T.C.M. Bakker. 1990. Female sticklebacks use male coloration in mate choice and hence avoid parasitized males. Nature, 344: 330-333. https://doi.org/10.1038/344330a0
- Milinski, M., S. Griffiths, K.M. Wegner, T.B.H. Reusch, A. Haas- Assenbaum and T. Boehm. 2005. Mate choice decision of stickleback females predictably modified by MHC peptide ligands. Proc. Nat. Acad. Sci., 102: 4414-4418. https://doi.org/10.1073/pnas.0408264102
- Moller, A.P. 1990. Parasites and sexual selection: Current status of the Hamilton and Zuk hypothesis. J. Evol. Biol., 3: 319-328. https://doi.org/10.1046/j.1420-9101.1990.3050319.x
- Moller, A.P. 1994. Repeatability of female choice in a monogamous swallow. Anim. Behav., 47: 643-648. https://doi.org/10.1006/anbe.1994.1087
- Moller, A.P. and A. Pomiankowski. 1993. Why have birds got multiple sexual ornaments? Behav. Ecol. Sociobiol., 32: 167-176.
- Neff, B.D. and T.E. Pitcher. 2005. Genetic quality and sexual selection: an integrated framework for good genes and compatible genes. Mol. Ecol., 14: 19-38.
- Nicoletto, P.F. 1991. The relationship between male ornamentation and swimming performance in the guppy, Poecilia reticulata. Behav. Ecol. Sociobiol., 28: 365-370. https://doi.org/10.1007/BF00164386
- Putnam, M. 1992. A review of the nature, function, variability, and supply of pigments in salmonid fish. pp. 245-263 in N. Depauw and J. Joyce, eds. Aquaculture and the environment. European Aquaculture Society, Gent, Belgium.
- Reichard, M., H. Liu and C. Smith. 2007. The co-evolutionary relationship between bitterling fishes and freshwater mussels: insights from interspecific comparisons. Evol. Ecol. Res., 9: 239-259.
- Reichard, M., J. Bryja, M. Ondrackova, M. Davidova, P. Kaniewska and C. Smith. 2005. Sexual selection for male dominance reduces opportunities for female mate choice in the Europe-an bitterling (Rhodeus sericeus). Mol. Ecol., 14: 1533-1542. https://doi.org/10.1111/j.1365-294X.2005.02534.x
- Reinhold, K. 2002. Modelling the evolution of female choice strategies under inbreeding conditions. Genetica, 116: 189-195. https://doi.org/10.1023/A:1021253014088
- Reusch, T.B.H., M.A. Haberli, P.B. Aeschlimann and M. Milinski. 2001. Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism. Nature, 414: 300-302. https://doi.org/10.1038/35104547
- Rowe, L. and D. Houle. 1996. The lek paradox and the capture of genetic variance by condition dependent traits. Proc. Roy. Soc. Lond. B., 263: 1415-1421. https://doi.org/10.1098/rspb.1996.0207
- Schiedt, K. 1989 New aspects of carotenoid metabolism in animals. In Carotenoids: chemistry and biology (ed. N.I. Krinsky, M.M. Mathews-Roth & R.F. Taylor), pp. 247-268. New York: Plenum Press.
- Spence, R. and C. Smith. 2006. Mating preference of female zebrafish, Danio rerio, in relation to male dominance. Behav. Ecol., 17: 779-783. https://doi.org/10.1093/beheco/arl016
- Suk, H.Y. and J.C. Choe. 2008. Dynamic female preference for multiple signals in Rhinogobius brunneus. Behav. Ecol. Sociobiol., 62: 945-951. https://doi.org/10.1007/s00265-007-0519-7
- Tomkins, J.L., J. Radwan, J.S. Kotiaho and T. Tregenza. 2004. Genic capture and resolving the lek paradox. Trends Ecol. Evol., 19: 323-328. https://doi.org/10.1016/j.tree.2004.03.029
- Tregenza, T. and N. Wedell. 2000. Genetic compatibility, mate choice and patterns of parentage: invited review. Mol. Ecol., 9: 1013-1027. https://doi.org/10.1046/j.1365-294x.2000.00964.x
- van Doorn, G.S. and F.J. Weissing. 2004. The evolution of female preferences for multiple indicators of quality. Amer. Nat., 164: 173-186. https://doi.org/10.1086/422203
- van Oosterhout, C., R.E. Trigg, G.R. Carvalho, A.E. Magurran, L. Hauser and P.W. Shaw. 2003. Inbreeding depression and genetic load of sexually selected traits: how the guppy lost its spots. J. Evol. Biol., 16: 273-281. https://doi.org/10.1046/j.1420-9101.2003.00511.x
- Widemo, F. and S.A. Saeher. 1999. Beauty is in the eye of the beholder: causes and consequences of variation in mating preferences. Trends Ecol. Evol., 14: 26-31. https://doi.org/10.1016/S0169-5347(98)01531-6
- Zahavi, A. 1975. Mate selection - a selection for a handicap. J. Theo. Biol., 53: 205-214. https://doi.org/10.1016/0022-5193(75)90111-3
- Zuk, M., R. Thornhill, J.D. Ligon, K. Johnson, S. Austad, S.H. Ligon, N. Thornhill and C. Costin. 1990. The role of male ornaments and courtship behavior in female mate choice of red jungle fowl. Amer. Nat., 136: 459-473. https://doi.org/10.1086/285107