저온 주사 레이저 및 홀소자 현미경을 이용한 GdBCO와 YBCO 초전도 선재의 국소적 특성 분석

Analysis of the Local Properties in GdBCO and YBCO Coated Conductors using Low-temperature Scanning Laser and Hall Probe Microscopy

  • Park, S.K. (Department of Physics, Kyungpook National University) ;
  • Ri, H.C. (Department of Physics, Kyungpook National University)
  • 투고 : 2012.02.29
  • 심사 : 2012.03.15
  • 발행 : 2012.04.30

초록

Distribution of the local properties in GdBCO and YBCO coated conductors was investigated using Low-temperature Scanning Laser and Hall Probe Microscopy (LTSLHPM). We prepared GdBCO and YBCO coated conductors to study the spatial distribution of the current density in a single bridge. Inhomogeneity of the ${T_c}^{max}$ in the bridge was analyzed from experimental results of Scanning Laser Microscopy (SLM) near the superconducting transition. The local transport and screening current in the bridge were also investigated using Scanning Hall Probe Microscopy (SHPM). A series of line scans of SLM of the GdBCO and YBCO sample showed that lines with more inhomogeneous distributions of ${\delta}V$ had more inhomogeneous distributions of ${T_c}^{max}$. The defect of the superconducting layer of the GdBCO sample caused by damage to the substrate affected the current flow. And we could analyze the redistribution of the current density using SLM and SHPM.

키워드

참고문헌

  1. G.W. Crabtree, J.Z. Liu, A. Umezawa, W.K. Kwon, C.H. Sowers and S.K. Malik, et al. Phys Rev B, 36 7 (1987), pp. 4021-4024. https://doi.org/10.1103/PhysRevB.36.4021
  2. L.J. Swartzendruber, A. Roitburd, D.L. Kaiser, F.W. Gayle and L.H. Bennett, Phys Rev Lett, 64 4 (1990), pp. 483-486. https://doi.org/10.1103/PhysRevLett.64.483
  3. J.R. Clem and R.P. Huebener, J Appl Phys, 51 5 (1980), pp. 2764-2773. https://doi.org/10.1063/1.327939
  4. R. Gross, M. Hartmann, K. Hipler, R.P. Huebener, F. Kober and D. Koelle, IEEE Trans Magn, 25 2 (1989), pp. 2250-2253. https://doi.org/10.1109/20.92756
  5. R. Gross and D. Koelle, Rep Prog Phys, 57 (1994), pp. 651-741. https://doi.org/10.1088/0034-4885/57/7/001
  6. K. Koyanagi, T. Kiss, M. Inoue, T. Nakamura, K. Imamura and M. Takeo, et al. Physica C, 445-448 (2006), pp. 677-681. https://doi.org/10.1016/j.physc.2006.05.003
  7. T. Kiss, M. Inoue, M. Yasunaga, H. Tokutomi, Y. Iijima and K. Kakimoto, et al. IEEE Trans Appl Supercond, 15 2 (2005), pp. 3656-3659. https://doi.org/10.1109/TASC.2005.849385
  8. L.B. Wang, M.B. Price, J.L. Young, C. Kwon, T.J. Haugen and P.N. Barnes, Physica C, 405 (2004), pp. 240-244. https://doi.org/10.1016/j.physc.2004.02.003
  9. A. Oral, S.J. Bending and M. Henini, Appl Phys Lett, 69 9 (1996), pp. 1324-1326. https://doi.org/10.1063/1.117582
  10. R.B. Dinner, M.R. Beasley and K.A. Moler, Rev Sci Instrum, 76 (2005), 103702. https://doi.org/10.1063/1.2072438
  11. R.B. Dinner, K.A. Moler, D.M. Feldmann and M.R. Beasley, Phys Rev B, 75 (2007), 144503. https://doi.org/10.1103/PhysRevB.75.144503
  12. S.K. Park, J.M. Kim, S.B. Lee, S.H. Kim, G.Y. Kim and H.-C. Ri, Cryogenics, 51 (2011), pp. 241-246. https://doi.org/10.1016/j.cryogenics.2010.06.004
  13. B.J. Roth, N.G. Sepulveda and J.P. Wikswo, Jr., J Appl Phys, 65 1 (1989), pp. 361-372. https://doi.org/10.1063/1.342549
  14. D.M. Feldmann, Phys Rev B, 69 (2004), 144515. https://doi.org/10.1103/PhysRevB.69.144515