DOI QR코드

DOI QR Code

A Multi-Channel Scheduling MAC (MCS-MAC) Protocol for Wi-Fi Mesh Networks

Wi-Fi 메쉬 네트워크를 위한 다중 채널 스케줄링 MAC (MCS-MAC) 프로토콜

  • 무악단 (부산대학교 물류IT학과) ;
  • 양재영 ((주)홈플러스 정보서비스&OM본부) ;
  • 주아봉 (부산대학교 정보컴퓨터공학부) ;
  • 정한유 (부산대학교 차세대물류IT기술연구사업단)
  • Received : 2011.10.20
  • Accepted : 2012.01.10
  • Published : 2012.01.31

Abstract

A Wi-Fi mesh network providing multi-hop wireless connections based on IEEE 802.11 PHY/MAC technology has recently received a significant attention as a network infrastructure that interconnects RFID systems and wireless sensor networks (WSNs). However, the current IEEE 802.11 contention-based MAC protocol cannot fully utilize the network capacity due to eithor frame collisions or unused network resources. In this paper, we propose a novel multi-channel scheduling MAC (MCS-MAC) protocol for Wi-Fi mesh networks. Under the secondary interference model of Wi-Fi mesh networks, the MCS-MAC protocol can maximize the network throughput via activation of collision-free links that has a maximal link weight. Through the simulations, we show that the throughput of the MCS-MAC protocol is at least three times higher than that of existing MAC protocols in Wi-Fi mesh networks.

IEEE 802.11 물리/MAC 계층을 기반으로 무선 다중 홉 연결을 제공하는 Wi-Fi 메쉬 네트워크는 RFID 시스템과 무선 센서 네트워크를 위한 네트워크 인프라로 최근 각광받고 있다. 그런데, 현재의 IEEE 802.11 기술의 경쟁 기반 MAC 프로토콜은 빈번한 프레임 충돌(Collision)과 자원 미사용(Idle)으로 인해 Wi-Fi 메쉬 네트워크가 제공하는 용량(Capacity)을 충분하게 활용하지 못하는 실정이다. 본 논문에서는 Wi-Fi 메쉬 네트워크의 수율을 최대화하기 위한 다중 채널 스케줄링 MAC (MCS-MAC) 프로토콜을 제시한다. MCS-MAC 프로토콜은 IEEE 802.11 무선 채널의 특징인 이차적 간섭 모형(Secondary Interference Model) 하에서 프레임 충돌이 없이 최대 가중치를 가지는 링크들을 활성화하여 Wi-Fi 네트워크의 수율을 극대화하는 특징을 가지고 있다. 시뮬레이션을 통해 제안하는 MCS-MAC 프로토콜이 기존에 알려진 동적 MAC 프로토콜들에 비해 최소 세 배 이상 수율을 향상할 수 있음을 보인다.

Keywords

References

  1. I. F. Akyildiz and X. Wang, Wireless Mesh Networks, John-Wiley & Sons 2009.
  2. Y. Zhang, J. Luo, H. Hu, Wireless Mesh Networking, Auerbach Publications, 2007.
  3. IEEE 802.11 Working Group, "Wireless LAN medium access control (MAC) and physical layer (PHY) specifications," 1997.
  4. IEEE 802.11 Working Group, "IEEE 802.11a- 1999 high speed physical layer in the 5 GHz band," 1999.
  5. S.-L. Wu, C.-Y. Lin, Y.-C. Tseng and J.-P. Sheu, "A new multi-channel MAC protocol with on-demand channel assignment for multi-hop mobile ad hoc networks," in I-SPAN 2000.
  6. V. Bharghavan, A. Demers, S. Shenker and L. Zhang, "MACAW: A media access protocol for wireless LANs," in ACM SIGCOMM''94, London, UK, 1994.
  7. J. So and N. Vaidya, "Multi-channel MAC for ad hoc networks: handling multi-channel hidden terminal using a single transceiver", in ACM MobiHoc'04, pp. 222-233, 2004.
  8. L. Tassiulas and A. Ephremides, "Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks," IEEE Trans. Automat. Cont., vol. 37, no. 12, pp. 1936-1948, Dec. 1992. https://doi.org/10.1109/9.182479
  9. A. Brzezinski, G. Zussman, and E. Modiano, "Distributed throughput maximization in wireless mesh netwroks via pre-partitioning," IEEE/ACM Trans. on Networking, vol. 16, no. 6, pp. 1406-1419, Dec. 2008. https://doi.org/10.1109/TNET.2008.918109
  10. Jae-Young Yang, Ledan Wu, Yafeng Zhou, and Han-You Jeong, "A Distributed Throughput-Maximal Scheduling MAC Protocol in Wi-Fi Mesh Networks," ICTC'11, Seoul, 2011.
  11. J.-H. Hoepman, "Simple distributed weighted matching," Oct. 2004, eprint cs.DC/0410047
  12. K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu, "Impact of interference on multi-hop wireless network performance," ACM Mobicom'03, 2003.
  13. Y. Xiao, "IEEE 802.11n: Enhancements for higher throughput in wireless LANs," IEEE Wireless Comm., pp. 82-91, Dec. 2005.
  14. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT Press, 1996.
  15. CAIDA,"Packet size distribution between Internet links in 1998 and 2008," online available: http://www.caida.org/research/traffic-analysis/pkt_size_distribution/graphs.xml